⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ah_eeprom_v3.c.svn-base

📁 最新之atheros芯片driver source code, 基于linux操作系统,內含atheros芯片HAL全部代码
💻 SVN-BASE
📖 第 1 页 / 共 4 页
字号:
		EEREAD(0xed);		ee->ee_ob2GHz[1] = eeval & 0x7;		ee->ee_db2GHz[1] = (eeval >> 3) & 0x7;	}	/* Initialize corner cal (thermal tx gain adjust parameters) */	ee->ee_cornerCal.clip = 4;	ee->ee_cornerCal.pd90 = 1;	ee->ee_cornerCal.pd84 = 1;	ee->ee_cornerCal.gSel = 0;	/*	* Read the conformance test limit identifiers	* These are used to match regulatory domain testing needs with	* the RD-specific tests that have been calibrated in the EEPROM.	*/	off = header[5];	for (i = 0; i < ee->ee_numCtls; i += 2) {		EEREAD(off++);		ee->ee_ctl[i] = (eeval >> 8) & 0xff;		ee->ee_ctl[i+1] = eeval & 0xff;	}	if (ee->ee_version < AR_EEPROM_VER5_3) {		/* XXX only for 5413? */		ee->ee_spurChans[0][1] = AR_SPUR_5413_1;		ee->ee_spurChans[1][1] = AR_SPUR_5413_2;		ee->ee_spurChans[2][1] = AR_NO_SPUR;		ee->ee_spurChans[0][0] = AR_NO_SPUR;	} else {		/* Read spur mitigation data */		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {			EEREAD(off);			ee->ee_spurChans[i][0] = eeval;			EEREAD(off+AR_EEPROM_MODAL_SPURS);			ee->ee_spurChans[i][1] = eeval;			off++;		}	}	/* for recent changes to NF scale */	if (ee->ee_version <= AR_EEPROM_VER3_2) {		ee->ee_noiseFloorThresh[headerInfo11A] = -54;		ee->ee_noiseFloorThresh[headerInfo11B] = -1;		ee->ee_noiseFloorThresh[headerInfo11G] = -1;	}	/* to override thresh62 for better 2.4 and 5 operation */	if (ee->ee_version <= AR_EEPROM_VER3_2) {		ee->ee_thresh62[headerInfo11A] = 15;	/* 11A */		ee->ee_thresh62[headerInfo11B] = 28;	/* 11B */		ee->ee_thresh62[headerInfo11G] = 28;	/* 11G */	}	/* Check for regulatory capabilities */	if (ee->ee_version >= AR_EEPROM_VER4_0) {		EEREAD(regCapOffsetPost4_0);	} else {		EEREAD(regCapOffsetPre4_0);	}	ee->ee_regCap = eeval;	if (ee->ee_Amode == 0) {		/* Check for valid Amode in upgraded h/w */		if (ee->ee_version >= AR_EEPROM_VER4_0) {			ee->ee_Amode = (ee->ee_regCap & AR_EEPROM_EEREGCAP_EN_KK_NEW_11A)?1:0;		} else {			ee->ee_Amode = (ee->ee_regCap & AR_EEPROM_EEREGCAP_EN_KK_NEW_11A_PRE4_0)?1:0;		}	}	if (ee->ee_version >= AR_EEPROM_VER5_1)		EEREAD(AR_EEPROM_CAPABILITIES_OFFSET);	else		eeval = 0;	ee->ee_opCap = eeval;	EEREAD(AR_EEPROM_REG_DOMAIN);	ee->ee_regdomain = eeval;	return AH_TRUE;#undef EEREAD}/* * Now verify and copy EEPROM contents into the allocated space */static HAL_BOOLlegacyEepromReadContents(struct ath_hal *ah, HAL_EEPROM *ee){	/* Read the header information here */	if (!readHeaderInfo(ah, ee))		return AH_FALSE;#if 0	/* Require 5112 devices to have EEPROM 4.0 EEP_MAP set */	if (IS_5112(ah) && !ee->ee_eepMap) {		HALDEBUG(ah, HAL_DEBUG_ANY,		    "%s: 5112 devices must have EEPROM 4.0 with the "		    "EEP_MAP set\n", __func__);		return AH_FALSE;	}#endif	/*	 * Group 1: frequency pier locations readback	 * check that the structure has been populated	 * with enough space to hold the channels	 *	 * NOTE: Group 1 contains the 5 GHz channel numbers	 *	 that have dBm->pcdac calibrated information.	 */	if (!readEepromFreqPierInfo(ah, ee))		return AH_FALSE;	/*	 * Group 2:  readback data for all frequency piers	 *	 * NOTE: Group 2 contains the raw power calibration	 *	 information for each of the channels that we	 *	 recorded above.	 */	if (!readEepromRawPowerCalInfo(ah, ee))		return AH_FALSE;	/*	 * Group 5: target power values per rate	 *	 * NOTE: Group 5 contains the recorded maximum power	 *	 in dB that can be attained for the given rate.	 */	/* Read the power per rate info for test channels */	if (!readEepromTargetPowerCalInfo(ah, ee))		return AH_FALSE;	/*	 * Group 8: Conformance Test Limits information	 *	 * NOTE: Group 8 contains the values to limit the	 *	 maximum transmit power value based on any	 *	 band edge violations.	 */	/* Read the RD edge power limits */	return readEepromCTLInfo(ah, ee);}static HAL_STATUSlegacyEepromGet(struct ath_hal *ah, int param, void *val){	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;	uint8_t *macaddr;	uint16_t eeval;	uint32_t sum;	int i;	switch (param) {	case AR_EEP_OPCAP:		*(uint16_t *) val = ee->ee_opCap;		return HAL_OK;	case AR_EEP_REGDMN_0:		*(uint16_t *) val = ee->ee_regdomain;		return HAL_OK;	case AR_EEP_RFSILENT:		if (!ath_hal_eepromRead(ah, AR_EEPROM_RFSILENT, &eeval))			return HAL_EEREAD;		*(uint16_t *) val = eeval;		return HAL_OK;	case AR_EEP_MACADDR:		sum = 0;		macaddr = val;		for (i = 0; i < 3; i++) {			if (!ath_hal_eepromRead(ah, AR_EEPROM_MAC(2-i), &eeval)) {				HALDEBUG(ah, HAL_DEBUG_ANY,				    "%s: cannot read EEPROM location %u\n",				    __func__, i);				return HAL_EEREAD;			}			sum += eeval;			macaddr[2*i] = eeval >> 8;			macaddr[2*i + 1] = eeval & 0xff;		}		if (sum == 0 || sum == 0xffff*3) {			HALDEBUG(ah, HAL_DEBUG_ANY,			    "%s: mac address read failed: %s\n", __func__,			    ath_hal_ether_sprintf(macaddr));			return HAL_EEBADMAC;		}		return HAL_OK;	case AR_EEP_RFKILL:		HALASSERT(val == AH_NULL);		return ee->ee_rfKill ? HAL_OK : HAL_EIO;	case AR_EEP_AMODE:		HALASSERT(val == AH_NULL);		return ee->ee_Amode ? HAL_OK : HAL_EIO;	case AR_EEP_BMODE:		HALASSERT(val == AH_NULL);		return ee->ee_Bmode ? HAL_OK : HAL_EIO;	case AR_EEP_GMODE:		HALASSERT(val == AH_NULL);		return ee->ee_Gmode ? HAL_OK : HAL_EIO;	case AR_EEP_TURBO5DISABLE:		HALASSERT(val == AH_NULL);		return ee->ee_turbo5Disable ? HAL_OK : HAL_EIO;	case AR_EEP_TURBO2DISABLE:		HALASSERT(val == AH_NULL);		return ee->ee_turbo2Disable ? HAL_OK : HAL_EIO;	case AR_EEP_ISTALON:		/* Talon detect */		HALASSERT(val == AH_NULL);		return (ee->ee_version >= AR_EEPROM_VER5_4 &&		    ath_hal_eepromRead(ah, 0x0b, &eeval) && eeval == 1) ?			HAL_OK : HAL_EIO;	case AR_EEP_32KHZCRYSTAL:		HALASSERT(val == AH_NULL);		return ee->ee_exist32kHzCrystal ? HAL_OK : HAL_EIO;	case AR_EEP_COMPRESS:		HALASSERT(val == AH_NULL);		return (ee->ee_opCap & AR_EEPROM_EEPCAP_COMPRESS_DIS) == 0 ?		    HAL_OK : HAL_EIO;	case AR_EEP_FASTFRAME:		HALASSERT(val == AH_NULL);		return (ee->ee_opCap & AR_EEPROM_EEPCAP_FASTFRAME_DIS) == 0 ?		    HAL_OK : HAL_EIO;	case AR_EEP_AES:		HALASSERT(val == AH_NULL);		return (ee->ee_opCap & AR_EEPROM_EEPCAP_AES_DIS) == 0 ?		    HAL_OK : HAL_EIO;	case AR_EEP_BURST:		HALASSERT(val == AH_NULL);		return (ee->ee_opCap & AR_EEPROM_EEPCAP_BURST_DIS) == 0 ?		    HAL_OK : HAL_EIO;	case AR_EEP_MAXQCU:		if (ee->ee_opCap & AR_EEPROM_EEPCAP_MAXQCU) {			*(uint16_t *) val =			    MS(ee->ee_opCap, AR_EEPROM_EEPCAP_MAXQCU);			return HAL_OK;		} else			return HAL_EIO;	case AR_EEP_KCENTRIES:		if (ee->ee_opCap & AR_EEPROM_EEPCAP_KC_ENTRIES) {			*(uint16_t *) val =			    1 << MS(ee->ee_opCap, AR_EEPROM_EEPCAP_KC_ENTRIES);			return HAL_OK;		} else			return HAL_EIO;	case AR_EEP_ANTGAINMAX_5:		*(int8_t *) val = ee->ee_antennaGainMax[0];		return HAL_OK;	case AR_EEP_ANTGAINMAX_2:		*(int8_t *) val = ee->ee_antennaGainMax[1];		return HAL_OK;	case AR_EEP_WRITEPROTECT:		HALASSERT(val == AH_NULL);		return (ee->ee_protect & AR_EEPROM_PROTECT_WP_128_191) ?		    HAL_OK : HAL_EIO;	}	return HAL_EINVAL;}static HAL_BOOLlegacyEepromSet(struct ath_hal *ah, int param, int v){	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;	switch (param) {	case AR_EEP_AMODE:		ee->ee_Amode = v;		return HAL_OK;	case AR_EEP_BMODE:		ee->ee_Bmode = v;		return HAL_OK;	case AR_EEP_GMODE:		ee->ee_Gmode = v;		return HAL_OK;	case AR_EEP_TURBO5DISABLE:		ee->ee_turbo5Disable = v;		return HAL_OK;	case AR_EEP_TURBO2DISABLE:		ee->ee_turbo2Disable = v;		return HAL_OK;	case AR_EEP_COMPRESS:		if (v)			ee->ee_opCap &= ~AR_EEPROM_EEPCAP_COMPRESS_DIS;		else			ee->ee_opCap |= AR_EEPROM_EEPCAP_COMPRESS_DIS;		return HAL_OK;	case AR_EEP_FASTFRAME:		if (v)			ee->ee_opCap &= ~AR_EEPROM_EEPCAP_FASTFRAME_DIS;		else			ee->ee_opCap |= AR_EEPROM_EEPCAP_FASTFRAME_DIS;		return HAL_OK;	case AR_EEP_AES:		if (v)			ee->ee_opCap &= ~AR_EEPROM_EEPCAP_AES_DIS;		else			ee->ee_opCap |= AR_EEPROM_EEPCAP_AES_DIS;		return HAL_OK;	case AR_EEP_BURST:		if (v)			ee->ee_opCap &= ~AR_EEPROM_EEPCAP_BURST_DIS;		else			ee->ee_opCap |= AR_EEPROM_EEPCAP_BURST_DIS;		return HAL_OK;	}	return HAL_EINVAL;}static HAL_BOOLlegacyEepromDiag(struct ath_hal *ah, int request,     const void *args, uint32_t argsize, void **result, uint32_t *resultsize){	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;	const EEPROM_POWER_EXPN_5112 *pe;	switch (request) {	case HAL_DIAG_EEPROM:		*result = ee;		*resultsize = sizeof(*ee);		return AH_TRUE;	case HAL_DIAG_EEPROM_EXP_11A:	case HAL_DIAG_EEPROM_EXP_11B:	case HAL_DIAG_EEPROM_EXP_11G:		pe = &ee->ee_modePowerArray5112[		    request - HAL_DIAG_EEPROM_EXP_11A];		*result = pe->pChannels;		*resultsize = (*result == AH_NULL) ? 0 :			roundup(sizeof(uint16_t) * pe->numChannels,				sizeof(uint32_t)) +			sizeof(EXPN_DATA_PER_CHANNEL_5112) * pe->numChannels;		return AH_TRUE;	}	return AH_FALSE;}static uint16_tlegacyEepromGetSpurChan(struct ath_hal *ah, int ix, HAL_BOOL is2GHz){	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;	HALASSERT(0 <= ix && ix < AR_EEPROM_MODAL_SPURS);	return ee->ee_spurChans[ix][is2GHz];}/* * Reclaim any EEPROM-related storage. */static voidlegacyEepromDetach(struct ath_hal *ah){	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;        if (ee->ee_version >= AR_EEPROM_VER4_0 && ee->ee_eepMap == 1)		return freeEepromRawPowerCalInfo5112(ah, ee);	ath_hal_free(ee);	AH_PRIVATE(ah)->ah_eeprom = AH_NULL;}/* * These are not valid 2.4 channels, either we change 'em * or we need to change the coding to accept them. */static const uint16_t channels11b[] = { 2412, 2447, 2484 };static const uint16_t channels11g[] = { 2312, 2412, 2484 };HAL_STATUSath_hal_legacyEepromAttach(struct ath_hal *ah){	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;	uint32_t sum, eepMax;	uint16_t eeversion, eeprotect, eeval;	u_int i;	HALASSERT(ee == AH_NULL);	if (!ath_hal_eepromRead(ah, AR_EEPROM_VERSION, &eeversion)) {		HALDEBUG(ah, HAL_DEBUG_ANY,		    "%s: unable to read EEPROM version\n", __func__);		return HAL_EEREAD;	}	if (eeversion < AR_EEPROM_VER3) {		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unsupported EEPROM version "		    "%u (0x%x) found\n", __func__, eeversion, eeversion);		return HAL_EEVERSION;	}	if (!ath_hal_eepromRead(ah, AR_EEPROM_PROTECT, &eeprotect)) {		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cannot read EEPROM protection "		    "bits; read locked?\n", __func__);		return HAL_EEREAD;	}	HALDEBUG(ah, HAL_DEBUG_ATTACH, "EEPROM protect 0x%x\n", eeprotect);	/* XXX check proper access before continuing */	/*	 * Read the Atheros EEPROM entries and calculate the checksum.	 */	if (!ath_hal_eepromRead(ah, AR_EEPROM_SIZE_UPPER, &eeval)) {		HALDEBUG(ah, HAL_DEBUG_ANY,		    "%s: cannot read EEPROM upper size\n" , __func__);		return HAL_EEREAD;	}	if (eeval != 0)	{		eepMax = (eeval & AR_EEPROM_SIZE_UPPER_MASK) <<			AR_EEPROM_SIZE_ENDLOC_SHIFT;		if (!ath_hal_eepromRead(ah, AR_EEPROM_SIZE_LOWER, &eeval)) {			HALDEBUG(ah, HAL_DEBUG_ANY,			    "%s: cannot read EEPROM lower size\n" , __func__);			return HAL_EEREAD;		}		eepMax = (eepMax | eeval) - AR_EEPROM_ATHEROS_BASE;	} else		eepMax = AR_EEPROM_ATHEROS_MAX;	sum = 0;	for (i = 0; i < eepMax; i++) {		if (!ath_hal_eepromRead(ah, AR_EEPROM_ATHEROS(i), &eeval)) {			return HAL_EEREAD;		}		sum ^= eeval;	}	if (sum != 0xffff) {		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad EEPROM checksum 0x%x\n",		    __func__, sum);		return HAL_EEBADSUM;	}	ee = ath_hal_malloc(sizeof(HAL_EEPROM));	if (ee == AH_NULL) {		/* XXX message */		return HAL_ENOMEM;	}	ee->ee_protect = eeprotect;	ee->ee_version = eeversion;	ee->ee_numChannels11a = NUM_11A_EEPROM_CHANNELS;	ee->ee_numChannels2_4 = NUM_2_4_EEPROM_CHANNELS;	for (i = 0; i < NUM_11A_EEPROM_CHANNELS; i ++)		ee->ee_dataPerChannel11a[i].numPcdacValues = NUM_PCDAC_VALUES;	/* the channel list for 2.4 is fixed, fill this in here */	for (i = 0; i < NUM_2_4_EEPROM_CHANNELS; i++) {		ee->ee_channels11b[i] = channels11b[i];		/* XXX 5211 requires a hack though we don't support 11g */		if (ah->ah_magic == 0x19570405)			ee->ee_channels11g[i] = channels11b[i];		else			ee->ee_channels11g[i] = channels11g[i];		ee->ee_dataPerChannel11b[i].numPcdacValues = NUM_PCDAC_VALUES;		ee->ee_dataPerChannel11g[i].numPcdacValues = NUM_PCDAC_VALUES;	}	if (!legacyEepromReadContents(ah, ee)) {		/* XXX message */		ath_hal_free(ee);		return HAL_EEREAD;	/* XXX */	}	AH_PRIVATE(ah)->ah_eeprom = ee;	AH_PRIVATE(ah)->ah_eeversion = eeversion;	AH_PRIVATE(ah)->ah_eepromDetach = legacyEepromDetach;	AH_PRIVATE(ah)->ah_eepromGet = legacyEepromGet;	AH_PRIVATE(ah)->ah_eepromSet = legacyEepromSet;	AH_PRIVATE(ah)->ah_getSpurChan = legacyEepromGetSpurChan;	AH_PRIVATE(ah)->ah_eepromDiag = legacyEepromDiag;	return HAL_OK;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -