📄 ah.c.svn-base
字号:
case HAL_CAP_CIPHER: /* cipher handled in hardware */ case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */ return HAL_ENOTSUPP; case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */ return HAL_ENOTSUPP; case HAL_CAP_PHYCOUNTERS: /* hardware PHY error counters */ return pCap->halHwPhyCounterSupport ? HAL_OK : HAL_ENXIO; case HAL_CAP_WME_TKIPMIC: /* hardware can do TKIP MIC when WMM is turned on */ return HAL_ENOTSUPP; case HAL_CAP_DIVERSITY: /* hardware supports fast diversity */ return HAL_ENOTSUPP; case HAL_CAP_KEYCACHE_SIZE: /* hardware key cache size */ *result = pCap->halKeyCacheSize; return HAL_OK; case HAL_CAP_NUM_TXQUEUES: /* number of hardware tx queues */ *result = pCap->halTotalQueues; return HAL_OK; case HAL_CAP_VEOL: /* hardware supports virtual EOL */ return pCap->halVEOLSupport ? HAL_OK : HAL_ENOTSUPP; case HAL_CAP_PSPOLL: /* hardware PS-Poll support works */ return pCap->halPSPollBroken ? HAL_ENOTSUPP : HAL_OK; case HAL_CAP_COMPRESSION: return pCap->halCompressSupport ? HAL_OK : HAL_ENOTSUPP; case HAL_CAP_BURST: return pCap->halBurstSupport ? HAL_OK : HAL_ENOTSUPP; case HAL_CAP_FASTFRAME: return pCap->halFastFramesSupport ? HAL_OK : HAL_ENOTSUPP; case HAL_CAP_DIAG: /* hardware diagnostic support */ *result = AH_PRIVATE(ah)->ah_diagreg; return HAL_OK; case HAL_CAP_TXPOW: /* global tx power limit */ switch (capability) { case 0: /* facility is supported */ return HAL_OK; case 1: /* current limit */ *result = AH_PRIVATE(ah)->ah_powerLimit; return HAL_OK; case 2: /* current max tx power */ *result = AH_PRIVATE(ah)->ah_maxPowerLevel; return HAL_OK; case 3: /* scale factor */ *result = AH_PRIVATE(ah)->ah_tpScale; return HAL_OK; } return HAL_ENOTSUPP; case HAL_CAP_BSSIDMASK: /* hardware supports bssid mask */ return pCap->halBssIdMaskSupport ? HAL_OK : HAL_ENOTSUPP; case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */ return pCap->halMcastKeySrchSupport ? HAL_OK : HAL_ENOTSUPP; case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */ return HAL_ENOTSUPP; case HAL_CAP_RFSILENT: /* rfsilent support */ switch (capability) { case 0: /* facility is supported */ return pCap->halRfSilentSupport ? HAL_OK : HAL_ENOTSUPP; case 1: /* current setting */ return AH_PRIVATE(ah)->ah_rfkillEnabled ? HAL_OK : HAL_ENOTSUPP; case 2: /* rfsilent config */ *result = AH_PRIVATE(ah)->ah_rfsilent; return HAL_OK; } return HAL_ENOTSUPP; case HAL_CAP_11D:#ifdef AH_SUPPORT_11D return HAL_OK;#else return HAL_ENOTSUPP;#endif case HAL_CAP_RXORN_FATAL: /* HAL_INT_RXORN treated as fatal */ return AH_PRIVATE(ah)->ah_rxornIsFatal ? HAL_OK : HAL_ENOTSUPP; case HAL_CAP_HT: return pCap->halHTSupport ? HAL_OK : HAL_ENOTSUPP; case HAL_CAP_TX_CHAINMASK: /* mask of TX chains supported */ *result = pCap->halTxChainMask; return HAL_OK; case HAL_CAP_RX_CHAINMASK: /* mask of RX chains supported */ *result = pCap->halRxChainMask; return HAL_OK; case HAL_CAP_RXTSTAMP_PREC: /* rx desc tstamp precision (bits) */ *result = pCap->halTstampPrecision; return HAL_OK; default: return HAL_EINVAL; }}HAL_BOOLath_hal_setcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type, uint32_t capability, uint32_t setting, HAL_STATUS *status){ switch (type) { case HAL_CAP_TXPOW: switch (capability) { case 3: if (setting <= HAL_TP_SCALE_MIN) { AH_PRIVATE(ah)->ah_tpScale = setting; return AH_TRUE; } break; } break; case HAL_CAP_RFSILENT: /* rfsilent support */ /* * NB: allow even if halRfSilentSupport is false * in case the EEPROM is misprogrammed. */ switch (capability) { case 1: /* current setting */ AH_PRIVATE(ah)->ah_rfkillEnabled = (setting != 0); return AH_TRUE; case 2: /* rfsilent config */ /* XXX better done per-chip for validation? */ AH_PRIVATE(ah)->ah_rfsilent = setting; return AH_TRUE; } break; case HAL_CAP_REG_DMN: /* regulatory domain */ AH_PRIVATE(ah)->ah_currentRD = setting; return AH_TRUE; case HAL_CAP_RXORN_FATAL: /* HAL_INT_RXORN treated as fatal */ AH_PRIVATE(ah)->ah_rxornIsFatal = setting; return AH_TRUE; default: break; } if (status) *status = HAL_EINVAL; return AH_FALSE;}/* * Common support for getDiagState method. */static u_intath_hal_getregdump(struct ath_hal *ah, const HAL_REGRANGE *regs, void *dstbuf, int space){ uint32_t *dp = dstbuf; int i; for (i = 0; space >= 2*sizeof(uint32_t); i++) { u_int r = regs[i].start; u_int e = regs[i].end; *dp++ = (r<<16) | e; space -= sizeof(uint32_t); do { *dp++ = OS_REG_READ(ah, r); r += sizeof(uint32_t); space -= sizeof(uint32_t); } while (r <= e && space >= sizeof(uint32_t)); } return (char *) dp - (char *) dstbuf;}HAL_BOOLath_hal_getdiagstate(struct ath_hal *ah, int request, const void *args, uint32_t argsize, void **result, uint32_t *resultsize){ switch (request) { case HAL_DIAG_REVS: *result = &AH_PRIVATE(ah)->ah_devid; *resultsize = sizeof(HAL_REVS); return AH_TRUE; case HAL_DIAG_REGS: *resultsize = ath_hal_getregdump(ah, args, *result,*resultsize); return AH_TRUE; case HAL_DIAG_FATALERR: *result = &AH_PRIVATE(ah)->ah_fatalState[0]; *resultsize = sizeof(AH_PRIVATE(ah)->ah_fatalState); return AH_TRUE; case HAL_DIAG_EEREAD: if (argsize != sizeof(uint16_t)) return AH_FALSE; if (!ath_hal_eepromRead(ah, *(const uint16_t *)args, *result)) return AH_FALSE; *resultsize = sizeof(uint16_t); return AH_TRUE;#ifdef AH_PRIVATE_DIAG case HAL_DIAG_SETKEY: { const HAL_DIAG_KEYVAL *dk; if (argsize != sizeof(HAL_DIAG_KEYVAL)) return AH_FALSE; dk = (const HAL_DIAG_KEYVAL *)args; return ah->ah_setKeyCacheEntry(ah, dk->dk_keyix, &dk->dk_keyval, dk->dk_mac, dk->dk_xor); } case HAL_DIAG_RESETKEY: if (argsize != sizeof(uint16_t)) return AH_FALSE; return ah->ah_resetKeyCacheEntry(ah, *(const uint16_t *)args);#ifdef AH_SUPPORT_WRITE_EEPROM case HAL_DIAG_EEWRITE: { const HAL_DIAG_EEVAL *ee; if (argsize != sizeof(HAL_DIAG_EEVAL)) return AH_FALSE; ee = (const HAL_DIAG_EEVAL *)args; return ath_hal_eepromWrite(ah, ee->ee_off, ee->ee_data); }#endif /* AH_SUPPORT_WRITE_EEPROM */#endif /* AH_PRIVATE_DIAG */ case HAL_DIAG_11NCOMPAT: if (argsize == 0) { *resultsize = sizeof(uint32_t); *((uint32_t *)(*result)) = AH_PRIVATE(ah)->ah_11nCompat; } else if (argsize == sizeof(uint32_t)) { AH_PRIVATE(ah)->ah_11nCompat = *(const uint32_t *)args; } else return AH_FALSE; return AH_TRUE; } return AH_FALSE;}/* * Set the properties of the tx queue with the parameters * from qInfo. */HAL_BOOLath_hal_setTxQProps(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi, const HAL_TXQ_INFO *qInfo){ uint32_t cw; if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) { HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue\n", __func__); return AH_FALSE; } /* XXX validate parameters */ qi->tqi_ver = qInfo->tqi_ver; qi->tqi_subtype = qInfo->tqi_subtype; qi->tqi_qflags = qInfo->tqi_qflags; qi->tqi_priority = qInfo->tqi_priority; if (qInfo->tqi_aifs != HAL_TXQ_USEDEFAULT) qi->tqi_aifs = AH_MIN(qInfo->tqi_aifs, 255); else qi->tqi_aifs = INIT_AIFS; if (qInfo->tqi_cwmin != HAL_TXQ_USEDEFAULT) { cw = AH_MIN(qInfo->tqi_cwmin, 1024); /* make sure that the CWmin is of the form (2^n - 1) */ qi->tqi_cwmin = 1; while (qi->tqi_cwmin < cw) qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1; } else qi->tqi_cwmin = qInfo->tqi_cwmin; if (qInfo->tqi_cwmax != HAL_TXQ_USEDEFAULT) { cw = AH_MIN(qInfo->tqi_cwmax, 1024); /* make sure that the CWmax is of the form (2^n - 1) */ qi->tqi_cwmax = 1; while (qi->tqi_cwmax < cw) qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1; } else qi->tqi_cwmax = INIT_CWMAX; /* Set retry limit values */ if (qInfo->tqi_shretry != 0) qi->tqi_shretry = AH_MIN(qInfo->tqi_shretry, 15); else qi->tqi_shretry = INIT_SH_RETRY; if (qInfo->tqi_lgretry != 0) qi->tqi_lgretry = AH_MIN(qInfo->tqi_lgretry, 15); else qi->tqi_lgretry = INIT_LG_RETRY; qi->tqi_cbrPeriod = qInfo->tqi_cbrPeriod; qi->tqi_cbrOverflowLimit = qInfo->tqi_cbrOverflowLimit; qi->tqi_burstTime = qInfo->tqi_burstTime; qi->tqi_readyTime = qInfo->tqi_readyTime; switch (qInfo->tqi_subtype) { case HAL_WME_UPSD: if (qi->tqi_type == HAL_TX_QUEUE_DATA) qi->tqi_intFlags = HAL_TXQ_USE_LOCKOUT_BKOFF_DIS; break; default: break; /* NB: silence compiler */ } return AH_TRUE;}HAL_BOOLath_hal_getTxQProps(struct ath_hal *ah, HAL_TXQ_INFO *qInfo, const HAL_TX_QUEUE_INFO *qi){ if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) { HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue\n", __func__); return AH_FALSE; } qInfo->tqi_qflags = qi->tqi_qflags; qInfo->tqi_ver = qi->tqi_ver; qInfo->tqi_subtype = qi->tqi_subtype; qInfo->tqi_qflags = qi->tqi_qflags; qInfo->tqi_priority = qi->tqi_priority; qInfo->tqi_aifs = qi->tqi_aifs; qInfo->tqi_cwmin = qi->tqi_cwmin; qInfo->tqi_cwmax = qi->tqi_cwmax; qInfo->tqi_shretry = qi->tqi_shretry; qInfo->tqi_lgretry = qi->tqi_lgretry; qInfo->tqi_cbrPeriod = qi->tqi_cbrPeriod; qInfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit; qInfo->tqi_burstTime = qi->tqi_burstTime; qInfo->tqi_readyTime = qi->tqi_readyTime; return AH_TRUE;} /* 11a Turbo 11b 11g 108g */static const int16_t NOISE_FLOOR[] = { -96, -93, -98, -96, -93 };/* * Read the current channel noise floor and return. * If nf cal hasn't finished, channel noise floor should be 0 * and we return a nominal value based on band and frequency. * * NB: This is a private routine used by per-chip code to * implement the ah_getChanNoise method. */int16_tath_hal_getChanNoise(struct ath_hal *ah, HAL_CHANNEL *chan){ HAL_CHANNEL_INTERNAL *ichan; ichan = ath_hal_checkchannel(ah, chan); if (ichan == AH_NULL) { HALDEBUG(ah, HAL_DEBUG_NFCAL, "%s: invalid channel %u/0x%x; no mapping\n", __func__, chan->channel, chan->channelFlags); return 0; } if (ichan->rawNoiseFloor == 0) { WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan); HALASSERT(mode < WIRELESS_MODE_MAX); return NOISE_FLOOR[mode] + ath_hal_getNfAdjust(ah, ichan); } else return ichan->rawNoiseFloor + ichan->noiseFloorAdjust;}/* * Process all valid raw noise floors into the dBm noise floor values. * Though our device has no reference for a dBm noise floor, we perform * a relative minimization of NF's based on the lowest NF found across a * channel scan. */voidath_hal_process_noisefloor(struct ath_hal *ah){ HAL_CHANNEL_INTERNAL *c; int16_t correct2, correct5; int16_t lowest2, lowest5; int i; /* * Find the lowest 2GHz and 5GHz noise floor values after adjusting * for statistically recorded NF/channel deviation. */ correct2 = lowest2 = 0; correct5 = lowest5 = 0; for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) { WIRELESS_MODE mode; int16_t nf; c = &AH_PRIVATE(ah)->ah_channels[i]; if (c->rawNoiseFloor >= 0) continue; mode = ath_hal_chan2wmode(ah, (HAL_CHANNEL *) c); HALASSERT(mode < WIRELESS_MODE_MAX); nf = c->rawNoiseFloor + NOISE_FLOOR[mode] + ath_hal_getNfAdjust(ah, c); if (IS_CHAN_5GHZ(c)) { if (nf < lowest5) { lowest5 = nf; correct5 = NOISE_FLOOR[mode] - (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c)); } } else { if (nf < lowest2) { lowest2 = nf; correct2 = NOISE_FLOOR[mode] - (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c)); } } } /* Correct the channels to reach the expected NF value */ for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) { c = &AH_PRIVATE(ah)->ah_channels[i]; if (c->rawNoiseFloor >= 0) continue; /* Apply correction factor */ c->noiseFloorAdjust = ath_hal_getNfAdjust(ah, c) + (IS_CHAN_5GHZ(c) ? correct5 : correct2); HALDEBUG(ah, HAL_DEBUG_NFCAL, "%u/0x%x raw nf %d adjust %d\n", c->channel, c->channelFlags, c->rawNoiseFloor, c->noiseFloorAdjust); }}/* * INI support routines. */intath_hal_ini_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia, int col, int regWr){ int r; for (r = 0; r < ia->rows; r++) { OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0), HAL_INI_VAL(ia, r, col)); DMA_YIELD(regWr); } return regWr;}voidath_hal_ini_bank_setup(uint32_t data[], const HAL_INI_ARRAY *ia, int col){ int r; for (r = 0; r < ia->rows; r++) data[r] = HAL_INI_VAL(ia, r, col);}intath_hal_ini_bank_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia, const uint32_t data[], int regWr){ int r; for (r = 0; r < ia->rows; r++) { OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0), data[r]); DMA_YIELD(regWr); } return regWr;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -