📄 franks_mk_adj_mat.m
字号:
function [A, names,order] = franks_mk_adj_mat(connections, names, topological)% MK_ADJ_MAT Make a directed adjacency matrix from a list of connections between named nodes.%% A = mk_adj_mat(connections, name)% This is best explaine by an example:% names = {'WetGrass', 'Sprinkler', 'Cloudy', 'Rain'}; % connections = {'Cloudy', 'Sprinkler'; 'Cloudy', 'Rain'; 'Sprinkler', 'WetGrass'; 'Rain', 'WetGrass'}; % adds the arcs C -> S, C -> R, S -> W, R -> W. Node 1 is W, 2 is S, 3 is C, 4 is R.%% [A, names] = mk_adj_mat(connections, name, 1)% The last argument of 1 indicates that we should topologically sort the nodes (parents before children).% In the example, the numbering becomes: node 1 is C, 2 is R, 3 is S, 4 is W% and the return value of names gets permuted to {'Cloudy', 'Rain', 'Sprinkler', 'WetGrass'}.% Note that topological sorting the graph is only possible if it has no directed cycles.%adapted by Frank Rijmen 2004: now returns also the way the nodes are reorderedif nargin < 3, topological = 0; end n=length(names);A=zeros(n);[nr nc] = size(connections);for r=1:nr from = strcmp(connections{r,1}, names); assert(~isempty(from)); to = strcmp(connections{r,2}, names); assert(~isempty(to)); %fprintf(1, 'from %s %d to %s %d\n', connections{r,1}, from, connections{r,2}, to); A(from,to) = 1;endif topological order = topological_sort(A); A = A(order, order); names = names(order); end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -