📄 construct_lin_pred.m
字号:
function linear_predictor=construct_lin_pred(parms,design,parents,node_sizes,equiv_class,equiv_class_time,terminal_merged_nodes,N)
%linear_predictor constructs linear predictor conditional probability tables
%design mat can be case specific or constant across cases
%this is automatically determined from the size of the last dimensions
%of the design mat
linear_predictor=cell(length(design),1);%one linear predictor for each equivalent class of nodes
for i=1:length(design)
nd=ndims(design{i});
if size(design{i},nd)~=N
n=1;
grouped=1;
else
n=N;
grouped=0;
end
node_nr=find(equiv_class==i,1);
par_set=parms{equiv_class_time(node_nr)};%select appropriate parameter set
par=parents{node_nr};
set=[ par node_nr ];
terminal=mysubset(node_nr, terminal_merged_nodes.nodenrs);
if terminal
term_node_nr=find(terminal_merged_nodes.nodenrs==node_nr);
S_item=terminal_merged_nodes.respcat{term_node_nr}(1);
f=find(terminal_merged_nodes.respcat{term_node_nr}(:)~=S_item);
if ~isempty(f) error('all variables merged into same node should have same nr of response categories'), end
M=terminal_merged_nodes.nrvars(term_node_nr);
siz=[ node_sizes(set(1:end-1)) M S_item-1 ];%first category of each item has zero on lin_pred
else
siz=node_sizes(set);
siz(end)=siz(end)-1; %first category has zero on lin_pred
%siz=[siz(end) siz(1:end-1)];
end
for nn=1:n
if grouped
des=design{i};
else des=design{i}(:,:,nn);
end
if isscalar(siz) siz=[1 siz ]; else; end
lin_pred=des*par_set;
lin_pred=reshape(lin_pred,[ siz(end:-1:1)]);%first elements are put in first dimension,etc
lin_pred=permute( lin_pred,[length(siz):-1:1]);
addedzeroes=zeros([siz(1:end-1) 1 ]);%add zeroes for baseline category
lin_pred=cat(length(siz),addedzeroes,lin_pred);
if grouped linear_predictor{i}=lin_pred;
else linear_predictor{i}=cat(length(siz)+1,linear_predictor{i},lin_pred);
end
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -