⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 srfi-1.scm

📁 Scheme跨平台编译器
💻 SCM
📖 第 1 页 / 共 4 页
字号:
		  (receive (a d) (car+cdr list)		    (receive (cars cdrs) (recur other-lists)		      (values (cons a cars) (cons d cdrs))))))	    (values (list cars-final) '()))))));;; Like ##srfi1#CARS+CDRS, but blow up if any list is empty.(define (##srfi1#cars+cdrs/no-test lists)  (let recur ((lists lists))    (if (pair? lists)	(receive (list other-lists) (car+cdr lists)	  (receive (a d) (car+cdr list)	    (receive (cars cdrs) (recur other-lists)	      (values (cons a cars) (cons d cdrs)))))	(values '() '()))));;; count;;;;;;;;;(define (count pred list1 . lists);  (check-arg procedure? pred count)  (if (pair? lists)      ;; N-ary case      (let lp ((list1 list1) (lists lists) (i 0))	(if (null-list? list1) i	    (receive (as ds) (##srfi1#cars+cdrs lists)	      (if (null? as) i		  (lp (cdr list1) ds		      (if (apply pred (car list1) as) (fx+ i 1) i))))))      ;; Fast path      (let lp ((lis list1) (i 0))	(if (null-list? lis) i	    (lp (cdr lis) (if (pred (car lis)) (fx+ i 1) i))))));;; fold/unfold;;;;;;;;;;;;;;;(define (unfold-right p f g seed . maybe-tail);  (check-arg procedure? p unfold-right);  (check-arg procedure? f unfold-right);  (check-arg procedure? g unfold-right)  (let lp ((seed seed) (ans (:optional maybe-tail '())))    (if (p seed) ans	(lp (g seed)	    (cons (f seed) ans)))))(define (unfold p f g seed . maybe-tail-gen);  (check-arg procedure? p unfold);  (check-arg procedure? f unfold);  (check-arg procedure? g unfold)  (if (pair? maybe-tail-gen)      (let ((tail-gen (car maybe-tail-gen)))	(if (pair? (cdr maybe-tail-gen))	    (apply error "Too many arguments" unfold p f g seed maybe-tail-gen)	    (let recur ((seed seed))	      (if (p seed) (tail-gen seed)		  (cons (f seed) (recur (g seed)))))))      (let recur ((seed seed))	(if (p seed) '()	    (cons (f seed) (recur (g seed)))))))      (define (fold kons knil lis1 . lists);  (check-arg procedure? kons fold)  (if (pair? lists)      (let lp ((lists (cons lis1 lists)) (ans knil))	; N-ary case	(receive (cars+ans cdrs) (##srfi1#cars+cdrs+ lists ans)	  (if (null? cars+ans) ans ; Done.	      (lp cdrs (apply kons cars+ans)))))	          (let lp ((lis lis1) (ans knil))			; Fast path	(if (null-list? lis) ans	    (lp (cdr lis) (kons (car lis) ans))))))(define (fold-right kons knil lis1 . lists);  (check-arg procedure? kons fold-right)  (if (pair? lists)      (let recur ((lists (cons lis1 lists)))		; N-ary case	(let ((cdrs (##srfi1#cdrs lists)))	  (if (null? cdrs) knil	      (apply kons (##srfi1#cars+ lists (recur cdrs))))))      (let recur ((lis lis1))				; Fast path	(if (null-list? lis) knil	    (let ((head (car lis)))	      (kons head (recur (cdr lis))))))))(define (pair-fold-right f zero lis1 . lists);  (check-arg procedure? f pair-fold-right)  (if (pair? lists)      (let recur ((lists (cons lis1 lists)))		; N-ary case	(let ((cdrs (##srfi1#cdrs lists)))	  (if (null? cdrs) zero	      (apply f (append! lists (list (recur cdrs)))))))      (let recur ((lis lis1))				; Fast path	(if (null-list? lis) zero (f lis (recur (cdr lis)))))))(define (pair-fold f zero lis1 . lists);  (check-arg procedure? f pair-fold)  (if (pair? lists)      (let lp ((lists (cons lis1 lists)) (ans zero))	; N-ary case	(let ((tails (##srfi1#cdrs lists)))	  (if (null? tails) ans	      (lp tails (apply f (append! lists (list ans)))))))      (let lp ((lis lis1) (ans zero))	(if (null-list? lis) ans	    (let ((tail (cdr lis)))		; Grab the cdr now,	      (lp tail (f lis ans)))))))	; in case F SET-CDR!s LIS.      ;;; REDUCE and REDUCE-RIGHT only use RIDENTITY in the empty-list case.;;; These cannot meaningfully be n-ary.(define (reduce f ridentity lis);  (check-arg procedure? f reduce)  (if (null-list? lis) ridentity      (fold f (car lis) (cdr lis))))(define (reduce-right f ridentity lis);  (check-arg procedure? f reduce-right)  (if (null-list? lis) ridentity      (let recur ((head (car lis)) (lis (cdr lis)))	(if (pair? lis)	    (f head (recur (car lis) (cdr lis)))	    head))));;; Mappers: append-map append-map! pair-for-each map! filter-map map-in-order;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;(define (append-map f lis1 . lists)  (##srfi1#really-append-map append-map  append  f lis1 lists))(define (append-map! f lis1 . lists)   (##srfi1#really-append-map append-map! append! f lis1 lists))(define (##srfi1#really-append-map who appender f lis1 lists);  (check-arg procedure? f who)  (if (pair? lists)      (receive (cars cdrs) (##srfi1#cars+cdrs (cons lis1 lists))	(if (null? cars) '()	    (let recur ((cars cars) (cdrs cdrs))	      (let ((vals (apply f cars)))		(receive (cars2 cdrs2) (##srfi1#cars+cdrs cdrs)		  (if (null? cars2) vals		      (appender vals (recur cars2 cdrs2))))))))      ;; Fast path      (if (null-list? lis1) '()	  (let recur ((elt (car lis1)) (rest (cdr lis1)))	    (let ((vals (f elt)))	      (if (null-list? rest) vals		  (appender vals (recur (car rest) (cdr rest)))))))))(define (pair-for-each proc lis1 . lists);  (check-arg procedure? proc pair-for-each)  (if (pair? lists)      (let lp ((lists (cons lis1 lists)))	(let ((tails (##srfi1#cdrs lists)))	  (if (pair? tails)	      (begin (apply proc lists)		     (lp tails)))))      ;; Fast path.      (let lp ((lis lis1))	(if (not (null-list? lis))	    (let ((tail (cdr lis)))	; Grab the cdr now,	      (proc lis)		; in case PROC SET-CDR!s LIS.	      (lp tail))))));;; We stop when LIS1 runs out, not when any list runs out.(define (map! f lis1 . lists);  (check-arg procedure? f map!)  (if (pair? lists)      (let lp ((lis1 lis1) (lists lists))	(if (not (null-list? lis1))	    (receive (heads tails) (##srfi1#cars+cdrs/no-test lists)	      (set-car! lis1 (apply f (car lis1) heads))	      (lp (cdr lis1) tails))))      ;; Fast path.      (pair-for-each (lambda (pair) (set-car! pair (f (car pair)))) lis1))  lis1);;; Map F across L, and save up all the non-false results.(define (filter-map f lis1 . lists);  (check-arg procedure? f filter-map)  (if (pair? lists)      (let recur ((lists (cons lis1 lists)))	(receive (cars cdrs) (##srfi1#cars+cdrs lists)	  (if (pair? cars)	      (cond ((apply f cars) => (lambda (x) (cons x (recur cdrs))))		    (else (recur cdrs))) ; Tail call in this arm.	      '())))	          ;; Fast path.      (let recur ((lis lis1))	(if (null-list? lis) lis	    (let ((tail (recur (cdr lis))))	      (cond ((f (car lis)) => (lambda (x) (cons x tail)))		    (else tail)))))));;; Map F across lists, guaranteeing to go left-to-right.;;; NOTE: Some implementations of R5RS MAP are compliant with this spec;;;; in which case this procedure may simply be defined as a synonym for MAP.(define (map-in-order f lis1 . lists);  (check-arg procedure? f map-in-order)  (if (pair? lists)      (let recur ((lists (cons lis1 lists)))	(receive (cars cdrs) (##srfi1#cars+cdrs lists)	  (if (pair? cars)	      (let ((x (apply f cars)))		; Do head first,		(cons x (recur cdrs)))		; then tail.	      '())))	          ;; Fast path.      (let recur ((lis lis1))	(if (null-list? lis) lis	    (let ((tail (cdr lis))		  (x (f (car lis))))		; Do head first,	      (cons x (recur tail)))))))	; then tail.;;; We extend MAP to handle arguments of unequal length.(define map map-in-order)	;;; filter, remove, partition;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; FILTER, REMOVE, PARTITION and their destructive counterparts do not;;; disorder the elements of their argument.;; This FILTER shares the longest tail of L that has no deleted elements.;; If Scheme had multi-continuation calls, they could be made more efficient.(define (filter pred lis)			; Sleazing with EQ? makes this;  (check-arg procedure? pred filter)		; one faster.  (let recur ((lis lis))		    (if (null-list? lis) lis			; Use NOT-PAIR? to handle dotted lists.	(let ((head (car lis))	      (tail (cdr lis)))	  (if (pred head)	      (let ((new-tail (recur tail)))	; Replicate the RECUR call so		(if (eq? tail new-tail) lis		    (cons head new-tail)))	      (recur tail))))))			; this one can be a tail call.;;; Another version that shares longest tail.;(define (filter pred lis);  (receive (ans no-del?);      ;; (recur l) returns L with (pred x) values filtered.;      ;; It also returns a flag NO-DEL? if the returned value;      ;; is EQ? to L, i.e. if it didn't have to delete anything.;      (let recur ((l l));	(if (null-list? l) (values l #t);	    (let ((x  (car l));		  (tl (cdr l)));	      (if (pred x);		  (receive (ans no-del?) (recur tl);		    (if no-del?;			(values l #t);			(values (cons x ans) #f)));		  (receive (ans no-del?) (recur tl) ; Delete X.;		    (values ans #f))))));    ans));(define (filter! pred lis)			; Things are much simpler;  (let recur ((lis lis))			; if you are willing to;    (if (pair? lis)				; push N stack frames & do N;        (cond ((pred (car lis))		; SET-CDR! writes, where N is;               (set-cdr! lis (recur (cdr lis))); the length of the answer.;               lis)				;              (else (recur (cdr lis))));        lis)));;; This implementation of FILTER!;;; - doesn't cons, and uses no stack;;;; - is careful not to do redundant SET-CDR! writes, as writes to memory are ;;;   usually expensive on modern machines, and can be extremely expensive on ;;;   modern Schemes (e.g., ones that have generational GC's).;;; It just zips down contiguous runs of in and out elts in LIS doing the ;;; minimal number of SET-CDR!s to splice the tail of one run of ins to the ;;; beginning of the next.(define (filter! pred lis);  (check-arg procedure? pred filter!)  (let lp ((ans lis))    (cond ((null-list? ans)       ans)			; Scan looking for	  ((not (pred (car ans))) (lp (cdr ans)))	; first cons of result.	  ;; ANS is the eventual answer.	  ;; SCAN-IN: (CDR PREV) = LIS and (CAR PREV) satisfies PRED.	  ;;          Scan over a contiguous segment of the list that	  ;;          satisfies PRED.	  ;; SCAN-OUT: (CAR PREV) satisfies PRED. Scan over a contiguous	  ;;           segment of the list that *doesn't* satisfy PRED.	  ;;           When the segment ends, patch in a link from PREV	  ;;           to the start of the next good segment, and jump to	  ;;           SCAN-IN.	  (else (letrec ((scan-in (lambda (prev lis)				    (if (pair? lis)					(if (pred (car lis))					    (scan-in lis (cdr lis))					    (scan-out prev (cdr lis))))))			 (scan-out (lambda (prev lis)				     (let lp ((lis lis))				       (if (pair? lis)					   (if (pred (car lis))					       (begin (set-cdr! prev lis)						      (scan-in lis (cdr lis)))					       (lp (cdr lis)))					   (set-cdr! prev lis))))))		  (scan-in ans (cdr ans))		  ans)))));;; Answers share common tail with LIS where possible; ;;; the technique is slightly subtle.(define (partition pred lis);  (check-arg procedure? pred partition)  (let recur ((lis lis))    (if (null-list? lis) (values lis lis)	; Use NOT-PAIR? to handle dotted lists.	(let ((elt (car lis))	      (tail (cdr lis)))	  (receive (in out) (recur tail)	    (if (pred elt)		(values (if (pair? out) (cons elt in) lis) out)		(values in (if (pair? in) (cons elt out) lis))))))));(define (partition! pred lis)			; Things are much simpler;  (let recur ((lis lis))			; if you are willing to;    (if (null-list? lis) (values lis lis)	; push N stack frames & do N;        (let ((elt (car lis)))			; SET-CDR! writes, where N is;          (receive (in out) (recur (cdr lis))	; the length of LIS.;            (cond ((pred elt);                   (set-cdr! lis in);                   (values lis out));                  (else (set-cdr! lis out);                        (values in lis))))))));;; This implementation of PARTITION!;;; - doesn't cons, and uses no stack;;;; - is careful not to do redundant SET-CDR! writes, as writes to memory are;;;   usually expensive on modern machines, and can be extremely expensive on ;;;   modern Schemes (e.g., ones that have generational GC's).;;; It just zips down contiguous runs of in and out elts in LIS doing the;;; minimal number of SET-CDR!s to splice these runs together into the result ;;; lists.(define (partition! pred lis);  (check-arg procedure? pred partition!)  (if (null-list? lis) (values lis lis)      ;; This pair of loops zips down contiguous in & out runs of the      ;; list, splicing the runs together. The invariants are      ;;   SCAN-IN:  (cdr in-prev)  = LIS.      ;;   SCAN-OUT: (cdr out-prev) = LIS.      (letrec ((scan-in (lambda (in-prev out-prev lis)			  (let lp ((in-prev in-prev) (lis lis))			    (if (pair? lis)				(if (pred (car lis))				    (lp lis (cdr lis))				    (begin (set-cdr! out-prev lis)					   (scan-out in-prev lis (cdr lis))))				(set-cdr! out-prev lis))))) ; Done.	       (scan-out (lambda (in-prev out-prev lis)			   (let lp ((out-prev out-prev) (lis lis))			     (if (pair? lis)				 (if (pred (car lis))				     (begin (set-cdr! in-prev lis)					    (scan-in lis out-prev (cdr lis)))				     (lp lis (cdr lis)))				 (set-cdr! in-prev lis)))))) ; Done.	;; Crank up the scan&splice loops.	(if (pred (car lis))	    ;; LIS begins in-list. Search for out-list's first pair.	    (let lp ((prev-l lis) (l (cdr lis)))	      (cond ((not (pair? l)) (values lis l))		    ((pred (car l)) (lp l (cdr l)))		    (else (scan-out prev-l l (cdr l))			  (values lis l))))	; Done.	    ;; LIS begins out-list. Search for in-list's first pair.	    (let lp ((prev-l lis) (l (cdr lis)))	      (cond ((not (pair? l)) (values l lis))		    ((pred (car l))		     (scan-in l prev-l (cdr l))		     (values l lis))		; Done.		    (else (lp l (cdr l)))))))));;; Inline us, please.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -