⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 outputinfo.cpp

📁 MultiBoost 是c++实现的多类adaboost酸法。与传统的adaboost算法主要解决二类分类问题不同
💻 CPP
字号:
/** This file is part of MultiBoost, a multi-class * AdaBoost learner/classifier** Copyright (C) 2005-2006 Norman Casagrande* For informations write to nova77@gmail.com** This library is free software; you can redistribute it and/or* modify it under the terms of the GNU Lesser General Public* License as published by the Free Software Foundation; either* version 2.1 of the License, or (at your option) any later version.** This library is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU* Lesser General Public License for more details.** You should have received a copy of the GNU Lesser General Public* License along with this library; if not, write to the Free Software* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA**/#include <limits>#include "IO/OutputInfo.h"#include "IO/ClassMappings.h"#include "WeakLearners/BaseLearner.h"namespace MultiBoost {// -------------------------------------------------------------------------OutputInfo::OutputInfo(const string& outputInfoFile){   // open the stream   _outStream.open(outputInfoFile.c_str());   // is it really open?   if ( !_outStream.is_open() )   {      cerr << "ERROR: cannot open the output steam (<"            << outputInfoFile << ">) for the step-by-step info!" << endl;      exit(1);   }}// -------------------------------------------------------------------------void OutputInfo::outputIteration(int t){    _outStream << t; // just output t}// -------------------------------------------------------------------------void OutputInfo::outputError(InputData* pData, BaseLearner* pWeakHypothesis){   const int numClasses = ClassMappings::getNumClasses();   const int numExamples = pData->getNumExamples();   if ( _gTableMap.find(pData) == _gTableMap.end() )   {      // if it's the first time it sees this data      // it creates and initializes a new table      table& g = _gTableMap[pData];      g.resize(numExamples);      for ( int i = 0; i < numExamples; ++i )         g[i].resize(numClasses, 0);   }      table& g = _gTableMap[pData];      int numWrongs = 0;   // Compute the training error   for (int i = 0; i < numExamples; ++i)   {      // the class with the highest vote      int maxClassIdx = -1;      // the vote of the winning class      double maxClass = -numeric_limits<double>::max();      for (int l = 0; l < numClasses; ++l)      {              // building the strong learner         g[i][l] += pWeakHypothesis->getAlpha() * // alpha                    pWeakHypothesis->classify( pData, i, l ); // h_l(x)         // get the winner class         if (g[i][l] > maxClass)         {            maxClass = g[i][l];            maxClassIdx = l;         }      }      // if the winner class is not the actual class, then it is      // an error      if (maxClassIdx != pData->getClass(i))         ++numWrongs;   }   // The error must be bounded between 0 and 1   _outStream << '\t' << (double)(numWrongs)/(double)(numExamples);}// -------------------------------------------------------------------------void OutputInfo::outputMargins(InputData* pData, BaseLearner* pWeakHypothesis){   const int numClasses = ClassMappings::getNumClasses();   const int numExamples = pData->getNumExamples();   if ( _margins.find(pData) == _margins.end() )   {      // if it's the first time it sees this data      // it creates and initializes a new table      table& margins = _margins[pData];      margins.resize(numExamples);      for ( int i = 0; i < numExamples; ++i )         margins[i].resize(numClasses, 0);   }   // Same for the sums of alpha. If it is the first time it   // sees this data, it initialize the sums of the alpha for it   if ( _alphaSums.find(pData) == _alphaSums.end() )      _alphaSums[pData] = 0;   table& margins = _margins[pData];   double minMargin = numeric_limits<double>::max();   double belowZeroMargin = 0;                           for (int i = 0; i < numExamples; ++i)   {      for (int l = 0; l < numClasses; ++l)      {         // hy = +1 if the classification it is correct, -1 otherwise         double hy = pWeakHypothesis->classify(pData, i, l) * // h_l(x_i)                     pData->getBinaryClass(i, l); // y_i         // compute the margin         margins[i][l] += pWeakHypothesis->getAlpha() * hy;         // gets the margin below zero         if ( margins[i][l] < 0 )         {            if (l == pData->getClass(i))               belowZeroMargin += ( 1.0 / static_cast<double>(2*numExamples) );            else               belowZeroMargin += ( 1.0 / static_cast<double>(2*numExamples * (numClasses - 1)) );         }                 // get the minimum margin among classes and examples         if (margins[i][l] < minMargin)            minMargin = margins[i][l];      }   }   // compute the sums of the alphas for normalization   _alphaSums[pData] += pWeakHypothesis->getAlpha();   _outStream << '\t' << minMargin/_alphaSums[pData] << "\t" // minimum margin              << belowZeroMargin; // margins that are below zero}// -------------------------------------------------------------------------void OutputInfo::outputEdge(InputData* pData, BaseLearner* pWeakHypothesis){   const int numClasses = ClassMappings::getNumClasses();   const int numExamples = pData->getNumExamples();   double gamma = 0; // the edge   for (int i = 0; i < numExamples; ++i)   {      for (int l = 0; l < numClasses; ++l)      {               // hy = +1 if the classification it is correct, -1 otherwise         double hy = pWeakHypothesis->classify(pData, i, l) * // h_l(x_i)                     pData->getBinaryClass(i, l); // y_i         double w = pData->getWeight(i, l);         gamma += w * hy;      }   }   _outStream << '\t' << gamma; // edge}// -------------------------------------------------------------------------} // end of namespace MultiBoost

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -