⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 multistumplearner.cpp

📁 MultiBoost 是c++实现的多类adaboost酸法。与传统的adaboost算法主要解决二类分类问题不同
💻 CPP
字号:
/** This file is part of MultiBoost, a multi-class * AdaBoost learner/classifier** Copyright (C) 2005-2006 Norman Casagrande* For informations write to nova77@gmail.com** This library is free software; you can redistribute it and/or* modify it under the terms of the GNU Lesser General Public* License as published by the Free Software Foundation; either* version 2.1 of the License, or (at your option) any later version.** This library is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU* Lesser General Public License for more details.** You should have received a copy of the GNU Lesser General Public* License along with this library; if not, write to the Free Software* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA**/#include "MultiStumpLearner.h"#include "IO/Serialization.h"#include "IO/SortedData.h"#include <limits> // for numeric_limits<>namespace MultiBoost {REGISTER_LEARNER(MultiStumpLearner)// ------------------------------------------------------------------------------void MultiStumpLearner::run(InputData* pData){   const int numClasses = ClassMappings::getNumClasses();   const int numColumns = pData->getNumColumns();   // set the smoothing value to avoid numerical problem   // when theta=0.   setSmoothingVal( 1.0 / (double)pData->getNumExamples() * 0.01 );   // resize   _leftErrors.resize(numClasses);   _rightErrors.resize(numClasses);   _bestErrors.resize(numClasses);   _weightsPerClass.resize(numClasses);   _halfWeightsPerClass.resize(numClasses);   vector<sRates> mu(numClasses); // The class-wise rates. See BaseLearner::sRates for more info.   vector<double> tmpV(numClasses); // The class-wise votes/abstentions   vector<double> tmpThresholds(numClasses);   double tmpAlpha;   double bestE = numeric_limits<double>::max();   double tmpE;   for (int j = 0; j < numColumns; ++j)   {      const vpIterator dataBegin = static_cast<SortedData*>(pData)->getSortedBegin(j);      const vpIterator dataEnd = static_cast<SortedData*>(pData)->getSortedEnd(j);      //findThresholds(pData, j, tmpThresholds, mu, tmpV);      findThreshold<double>(dataBegin, dataEnd, pData, tmpThresholds, mu, tmpV);      tmpE = getEnergy(mu, tmpAlpha, tmpV);      if (tmpE < bestE)      {         // Store it in the current algorithm         // note: I don't really like having so many temp variables         // but the alternative would be a structure, which would need         // to be inheritable to make things more consistent. But this would         // make it less flexible. Therefore, I am still undecided. This         // might change!         _alpha = tmpAlpha;         _v = tmpV;         _selectedColumn = j;         _thresholds = tmpThresholds;         bestE = tmpE;      }   }}// ------------------------------------------------------------------------------char MultiStumpLearner::phi(double val, int classIdx){   if (val > _thresholds[classIdx])      return +1;   else      return -1;}// -----------------------------------------------------------------------void MultiStumpLearner::save(ofstream& outputStream, int numTabs){   // Calling the super-class method   StumpLearner::save(outputStream, numTabs);   // save all the thresholds   outputStream << Serialization::vectorTag("thArray", _thresholds, numTabs) << endl;}// -----------------------------------------------------------------------void MultiStumpLearner::load(nor_utils::StreamTokenizer& st){   // Calling the super-class method   StumpLearner::load(st);   // load vArray data   UnSerialization::seekAndParseVectorTag(st, "thArray", _thresholds);}// -----------------------------------------------------------------------} // end of namespace MultiBoost

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -