⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 orignal gmm versus trained.txt

📁 Matlab skin detector。运用高斯混合模型训练的到人的皮肤颜色分布。用于皮肤和人脸检测。
💻 TXT
字号:
orignal GMM:

skinMOG = [...
  73.53  29.94  17.76   765.40  121.44  112.80  0.0294;
  249.71  233.94  217.49   39.94  154.44  396.05  0.0331;
  161.68  116.25  96.95   291.03  60.48  162.85  0.0654;
  186.07  136.62  114.40   274.95  64.60  198.27  0.0756;
  189.26  98.37  51.18   633.18  222.40  250.69  0.0554;
  247.00  152.20  90.84   65.23  691.53  609.92  0.0314;
  150.10  72.66  37.76   408.63  200.77  257.57  0.0454;
  206.85  171.09  156.34   530.08  155.08  572.79  0.0469;
  212.78  152.82  120.04   160.57  84.52  243.90  0.0956;
  234.87  175.43  138.94   163.80  121.57  279.22  0.0763;
  151.19  97.74  74.59   425.40  73.56  175.11  0.1100;
  120.52  77.55  59.82   330.45  70.34  151.82  0.0676;
  192.20  119.62  82.32   152.76  92.14  259.15  0.0755;
  214.29  136.08  87.24   204.90  140.17  270.19  0.0500;
  99.57  54.33  38.06   448.13  90.18  151.29  0.0667;
  238.88  203.08  176.91   178.38  156.27  404.99  0.0749];

nonskinMOG = [...
  254.37  254.41  253.82   2.77  2.81  5.46  0.0637;
  9.39  8.09  8.52   46.84  33.59  32.48  0.0516;
  96.57  96.95  91.53   280.69  156.79  436.58  0.0864;
  160.44  162.49  159.06   355.98  115.89  591.24  0.0636;
  74.98  63.23  46.33   414.84  245.95  361.27  0.0747;
  121.83  60.88  18.31   2502.24  1383.53  237.18  0.0365;
  202.18  154.88  91.04   957.42  1766.94  1582.52  0.0349;
  193.06  201.93  206.55   562.88  190.23  447.28  0.0649;
  51.88  57.14  61.55   344.11  191.77  433.40  0.0656;
  30.88  26.84  25.32   222.07  118.65  182.41  0.1189;
  44.97  85.96  131.95   651.32  840.52  963.67  0.0362;
  236.02  236.27  230.70   225.03  117.29  331.95  0.0849;
  207.86  191.20  164.12   494.04  237.69  533.52  0.0368;
  99.83  148.11  188.17   955.88  654.95  916.70  0.0389;
  135.06  131.92  123.10   350.35  130.30  388.43  0.0943;
  135.96  103.89  66.88   806.44  642.20  350.36  0.0477];


trained GMM over all 8 images with 2 iterations per image using first approach:

skinMOG =

   37.4484   32.5658   34.1843   13.8999    4.3041    6.2758    0.0723
  182.0000  185.0000  192.0000    0.0000    0.0000    0.0000         0
   94.7552   99.6847  111.0957   17.2699   19.5284   28.4164    0.1212
  142.9789  145.5472  153.2264   16.9915   11.5471   17.9825    0.0134
  120.9929   80.2765   74.3183   36.5524   17.6171    5.0302    0.0253
  182.0000  188.0000  186.0000    0.0000    0.0000    0.0000         0
  112.4719   81.5838   75.4216   32.0925    9.9314    5.4775    0.0926
  168.4660  171.4826  178.6172    8.2754    3.6815    3.2656    0.0786
  163.5939  166.8673  174.5367    4.8418    1.2531    1.9210    0.0231
  179.0000  181.0000  180.0000    0.0000    0.0000    0.0000         0
  131.5429   91.3794   85.1058   80.9489   37.2305   30.9587    0.4317
  103.1082   72.8879   69.4870   87.9763   13.7888    9.9340    0.0837
  135.0000   96.0000   89.0000    0.0000    0.0000    0.0000         0
  142.6915  144.9823  152.0000   18.8445    7.9394    0.0000    0.0019
   76.7001   57.6445   58.2287  232.1433    9.9674   20.2618    0.0562
  181.0000  185.0000  188.0000    0.0000    0.0000    0.0000         0


nonskinMOG =

  254.3700  254.4100  253.8200    2.7700    2.8100    5.4600         0
   26.0199   22.7637   23.9363    2.3893    2.0352    2.0911    0.0564
   85.5143   89.4215   97.6160   12.3674    9.2640   17.9022    0.0905
  159.2924  162.7913  170.4675    9.7654    3.8964    5.4984    0.0279
   90.3027   65.5843   62.7222   60.4085    7.2927    9.6805    0.0371
   50.4974   40.3170   42.1664   91.5191    7.9992   11.1414    0.0394
  156.4721  158.3457  164.5596    6.0494    1.1693    3.6613    0.0088
  185.2112  184.5222  189.3651   12.6228   10.2581    8.7647    0.3340
   65.4967   49.3106   50.3677  158.3785    9.3339   12.3695    0.0377
   31.0593   27.3243   28.7598    4.8150    2.6862    3.2846    0.1108
   76.8143   80.9796   88.3997    6.6987    6.0730    6.1805    0.0352
  182.0000  188.0000  186.0000    0.0000    0.0000    0.0000         0
  175.6366  177.1109  183.1107   10.3601    3.4434    3.4622    0.1473
  151.4817  153.8402  160.7890    9.5545    4.8666   11.1621    0.0164
  123.6912  122.7599  131.2196  136.7536  112.7450  122.7393    0.0293
   69.2796   70.0922   76.8519   47.5771   20.1546   23.0501    0.0294


trained GMM over image 1, 2, and 3 with 5 EM iterations using second approach:

skinMOG =

   44.7533   37.7986   37.6286   54.9015    8.4493    8.2369    0.0579
  192.9774  195.0191  194.0191    0.0235    0.0209    0.0209    0.0000
  111.5958  116.2774  119.0166   61.1048   58.4686   63.6481    0.0433
  148.0359  149.1413  148.2574   40.6585    4.5243    4.9476    0.0984
  118.1438   81.8271   73.7301   13.3746    6.1385    2.6059    0.0075
  190.4370  191.8304  191.7016    2.6987    3.2964    5.7048    0.0000
  106.3561   76.8091   68.2218   64.6643   19.3080   15.2999    0.0016
  169.8269  171.1283  171.4325   11.5098    6.4394   11.7756    0.3477
  165.1209  166.8360  166.9714    5.5512    2.9833    4.0836    0.0001
  180.1756  180.4754  178.1448    1.6843    1.4019    3.7059    0.0001
  123.5026   86.7994   77.1792   54.5835   16.9132   12.1807    0.0979
  104.2707   75.4331   66.9675   62.0316   15.9075   14.0191    0.1945
  141.1892   98.0875   89.2599    8.4821    7.1792    5.7496    0.0020
  155.5398  151.8719  148.7651    3.2054    4.5327    3.5264    0.0000
   75.5901   56.4934   51.2757   75.3747   16.4189    9.3327    0.1364
  186.9220  188.2437  186.9079    1.0000    1.2430    3.1456    0.0126


nonskinMOG =

  254.3700  254.4100  253.8200    2.7700    2.8100    5.4600         0
   23.5097   22.0467   22.7638    1.4102    1.4765    1.1768    0.0118
   85.2345   90.2972   94.2765   30.7530   29.0714   35.0494    0.0872
  160.4023  162.0840  162.6603   22.6073   15.5500   19.9247    0.3192
   84.8915   66.0487   60.3606  118.0346   14.1118   28.3591    0.0966
   57.1648   46.4521   43.6943   49.1834    7.5995    6.2568    0.0275
  154.6064  157.0675  157.9592   24.4015    9.5154   16.0532    0.0011
  183.2362  184.1715  182.2585    4.8395    4.4549    5.3515    0.0575
   63.4963   52.0354   49.9144   65.0561   38.1920   48.5476    0.0236
   31.4531   28.9689   29.5101   16.2701    9.7369    9.5801    0.0723
   74.0639   78.5714   82.1688    9.6143   10.1038   11.9016    0.0559
  189.7216  191.1085  190.4244    0.9542    0.5608    0.7421    0.0015
  177.7338  178.3359  177.0879    6.4857    3.9539    7.2200    0.0808
  149.9984  153.3371  154.1600   19.8715    5.4894   12.8168    0.0961
  133.2217  138.8196  140.1573   35.3527   32.9575   43.3483    0.0603
   85.9253   76.0398   75.0742  433.1501   28.1290   12.4671    0.0087

trained GMM over image 6, 7, and 8 with 5 EM iterations using second approach:

skinMOG =

   41.6447   35.2823   35.9930   29.8428    5.9784    8.9809    0.0545
  194.0000  193.0000  199.0000    0.0000    0.0000    0.0000    0.0000
  142.1556   99.3637   91.8058   14.1894   17.0905   12.9976    0.0551
  143.6498  147.7534  147.0840   10.7727    6.4352   17.8835    0.0341
  123.2552   85.9811   76.0611   32.2166    6.7989    9.6026    0.0101
  191.0167  190.0384  195.6070    0.2197    0.2739    0.4582    0.0000
  119.3151   82.4800   73.1268   46.4358   14.3806   10.9444    0.0071
  173.1249  173.8657  173.4414    7.0529    3.7856   18.1803    0.2838
  168.7370  169.4032  167.8412    5.9719    2.1621    3.0726    0.0001
  181.9184  181.2747  179.6105    1.4993    1.6664    8.7088    0.0001
  130.3380   90.4254   81.4435   45.2153   18.1375   21.4221    0.2225
  110.2164   77.1093   68.6713   88.4236   22.2344   22.4008    0.2286
  145.8745   97.8390   94.6099    1.9823    4.0874    2.7996    0.0004
  148.3840  152.1493  151.8639   13.8744    9.1780   23.6726    0.0000
   80.9563   58.5946   54.0590   82.4675   23.5104   12.7832    0.0786
  190.0999  189.2557  193.9862    1.4718    1.4862    4.5545    0.0250


nonskinMOG =

  254.3700  254.4100  253.8200    2.7700    2.8100    5.4600         0
   23.9508   21.2153   22.1509    1.7749    0.7985    0.8139    0.0176
   91.6198   96.7122  102.4412   37.4938   46.4414   68.9631    0.1773
  164.2268  165.4725  165.0811   24.0270   13.0974   20.3770    0.1810
   87.7964   67.7558   62.6511  150.3346   17.7457   38.1562    0.1004
   53.1539   42.3764   42.4689   70.7084    7.0153   10.9279    0.0180
  154.4380  157.9877  158.0056   13.6884    7.9559   11.8391    0.0029
  184.7817  184.0624  187.4688    5.4987    4.1501   12.4569    0.0723
   64.2351   50.6718   49.7120   91.9255   22.9586   35.4645    0.0341
   30.6932   27.0072   27.8285   13.1068    7.6915    8.4944    0.1127
   79.0041   82.4463   85.2473   12.4593   11.3240   15.5032    0.0803
  191.5000  190.5074  196.1684    0.2675    0.2816    0.4069    0.0012
  179.8875  179.6710  180.5323    7.0916    3.0348   13.5246    0.1019
  151.4520  155.4066  155.2628   12.7896    8.3646   13.2259    0.0383
  128.1084  130.7246  132.1620  106.3594  105.6891   92.2336    0.0322
  116.6416   83.0016   76.8518  223.0543   16.1261   12.2306    0.0299

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -