📄 pbuf.c
字号:
/** * @file * Packet buffer management * * Packets are built from the pbuf data structure. It supports dynamic * memory allocation for packet contents or can reference externally * managed packet contents both in RAM and ROM. Quick allocation for * incoming packets is provided through pools with fixed sized pbufs. * * A packet may span over multiple pbufs, chained as a singly linked * list. This is called a "pbuf chain". * * Multiple packets may be queued, also using this singly linked list. * This is called a "packet queue". * * So, a packet queue consists of one or more pbuf chains, each of * which consist of one or more pbufs. CURRENTLY, PACKET QUEUES ARE * NOT SUPPORTED!!! Use helper structs to queue multiple packets. * * The differences between a pbuf chain and a packet queue are very * precise but subtle. * * The last pbuf of a packet has a ->tot_len field that equals the * ->len field. It can be found by traversing the list. If the last * pbuf of a packet has a ->next field other than NULL, more packets * are on the queue. * * Therefore, looping through a pbuf of a single packet, has an * loop end condition (tot_len == p->len), NOT (next == NULL). *//* * Copyright (c) 2001-2004 Swedish Institute of Computer Science. * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. * * This file is part of the lwIP TCP/IP stack. * * Author: Adam Dunkels <adam@sics.se> * */#include "lwip/opt.h"#include "lwip/stats.h"#include "lwip/def.h"#include "lwip/mem.h"#include "lwip/memp.h"#include "lwip/pbuf.h"#include "lwip/sys.h"#include "arch/perf.h"#include <string.h>#include <sal_os.h>#define SIZEOF_STRUCT_PBUF LWIP_MEM_ALIGN_SIZE(sizeof(struct pbuf))/* Since the pool is created in memp, PBUF_POOL_BUFSIZE will be automatically aligned there. Therefore, PBUF_POOL_BUFSIZE_ALIGNED can be used here. */#define PBUF_POOL_BUFSIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(PBUF_POOL_BUFSIZE)/** * Allocates a pbuf of the given type (possibly a chain for PBUF_POOL type). * * The actual memory allocated for the pbuf is determined by the * layer at which the pbuf is allocated and the requested size * (from the size parameter). * * @param layer flag to define header size * @param length size of the pbuf's payload * @param type this parameter decides how and where the pbuf * should be allocated as follows: * * - PBUF_RAM: buffer memory for pbuf is allocated as one large * chunk. This includes protocol headers as well. * - PBUF_ROM: no buffer memory is allocated for the pbuf, even for * protocol headers. Additional headers must be prepended * by allocating another pbuf and chain in to the front of * the ROM pbuf. It is assumed that the memory used is really * similar to ROM in that it is immutable and will not be * changed. Memory which is dynamic should generally not * be attached to PBUF_ROM pbufs. Use PBUF_REF instead. * - PBUF_REF: no buffer memory is allocated for the pbuf, even for * protocol headers. It is assumed that the pbuf is only * being used in a single thread. If the pbuf gets queued, * then pbuf_take should be called to copy the buffer. * - PBUF_POOL: the pbuf is allocated as a pbuf chain, with pbufs from * the pbuf pool that is allocated during pbuf_init(). * * @return the allocated pbuf. If multiple pbufs where allocated, this * is the first pbuf of a pbuf chain. */struct pbuf *pbuf_alloc(pbuf_layer layer, u16_t length, pbuf_type type){ struct pbuf *p, *q, *r; u16_t offset; s32_t rem_len; /* remaining length */ LWIP_DEBUGF(PBUF_DEBUG | LWIP_DBG_TRACE | 3, ("pbuf_alloc(length=%"U16_F")\n", length)); /* determine header offset */ offset = 0; switch (layer) { case PBUF_TRANSPORT: /* add room for transport (often TCP) layer header */ offset += PBUF_TRANSPORT_HLEN; /* FALLTHROUGH */ case PBUF_IP: /* add room for IP layer header */ offset += PBUF_IP_HLEN; /* FALLTHROUGH */ case PBUF_LINK: /* add room for link layer header */ offset += PBUF_LINK_HLEN; break; case PBUF_RAW: break; default: LWIP_ASSERT("pbuf_alloc: bad pbuf layer", 0); return NULL; } switch (type) { case PBUF_POOL: /* allocate head of pbuf chain into p */ p = memp_malloc(MEMP_PBUF_POOL); LWIP_DEBUGF(PBUF_DEBUG | LWIP_DBG_TRACE | 3, ("pbuf_alloc: allocated pbuf %p\n", (void *)p)); if (p == NULL) { return NULL; } p->type = type; p->next = NULL; /* make the payload pointer point 'offset' bytes into pbuf data memory */ p->payload = LWIP_MEM_ALIGN((void *)((u8_t *)p + (SIZEOF_STRUCT_PBUF + offset))); LWIP_ASSERT("pbuf_alloc: pbuf p->payload properly aligned", ((mem_ptr_t)p->payload % MEM_ALIGNMENT) == 0); /* the total length of the pbuf chain is the requested size */ p->tot_len = length; /* set the length of the first pbuf in the chain */ p->len = LWIP_MIN(length, PBUF_POOL_BUFSIZE_ALIGNED - LWIP_MEM_ALIGN_SIZE(offset)); LWIP_ASSERT("check p->payload + p->len does not overflow pbuf", ((u8_t*)p->payload + p->len <= (u8_t*)p + SIZEOF_STRUCT_PBUF + PBUF_POOL_BUFSIZE_ALIGNED)); /* set reference count (needed here in case we fail) */ p->ref = 1; /* now allocate the tail of the pbuf chain */ /* remember first pbuf for linkage in next iteration */ r = p; /* remaining length to be allocated */ rem_len = length - p->len; /* any remaining pbufs to be allocated? */ while (rem_len > 0) { q = memp_malloc(MEMP_PBUF_POOL); if (q == NULL) { /* free chain so far allocated */ pbuf_free(p); /* bail out unsuccesfully */ return NULL; } q->type = type; q->flags = 0; q->next = NULL; /* make previous pbuf point to this pbuf */ r->next = q; /* set total length of this pbuf and next in chain */ LWIP_ASSERT("rem_len < max_u16_t", rem_len < 0xffff); q->tot_len = (u16_t)rem_len; /* this pbuf length is pool size, unless smaller sized tail */ q->len = LWIP_MIN((u16_t)rem_len, PBUF_POOL_BUFSIZE_ALIGNED); q->payload = (void *)((u8_t *)q + SIZEOF_STRUCT_PBUF); LWIP_ASSERT("pbuf_alloc: pbuf q->payload properly aligned", ((mem_ptr_t)q->payload % MEM_ALIGNMENT) == 0); LWIP_ASSERT("check p->payload + p->len does not overflow pbuf", ((u8_t*)p->payload + p->len <= (u8_t*)p + SIZEOF_STRUCT_PBUF + PBUF_POOL_BUFSIZE_ALIGNED)); q->ref = 1; /* calculate remaining length to be allocated */ rem_len -= q->len; /* remember this pbuf for linkage in next iteration */ r = q; } /* end of chain */ /*r->next = NULL;*/ break; case PBUF_RAM: /* If pbuf is to be allocated in RAM, allocate memory for it. */ p = (struct pbuf*)mem_malloc(LWIP_MEM_ALIGN_SIZE(SIZEOF_STRUCT_PBUF + offset) + LWIP_MEM_ALIGN_SIZE(length)); if (p == NULL) { return NULL; } /* Set up internal structure of the pbuf. */ p->payload = LWIP_MEM_ALIGN((void *)((u8_t *)p + SIZEOF_STRUCT_PBUF + offset)); p->len = p->tot_len = length; p->next = NULL; p->type = type; LWIP_ASSERT("pbuf_alloc: pbuf->payload properly aligned", ((mem_ptr_t)p->payload % MEM_ALIGNMENT) == 0); break; /* pbuf references existing (non-volatile static constant) ROM payload? */ case PBUF_ROM: /* pbuf references existing (externally allocated) RAM payload? */ case PBUF_REF: /* only allocate memory for the pbuf structure */ p = memp_malloc(MEMP_PBUF); if (p == NULL) { LWIP_DEBUGF(PBUF_DEBUG | LWIP_DBG_TRACE | 2, ("pbuf_alloc: Could not allocate MEMP_PBUF for PBUF_%s.\n", (type == PBUF_ROM) ? "ROM" : "REF")); return NULL; } /* caller must set this field properly, afterwards */ p->payload = NULL; p->len = p->tot_len = length; p->next = NULL; p->type = type; break; default: LWIP_ASSERT("pbuf_alloc: erroneous type", 0); return NULL; } /* set reference count */ p->ref = 1; /* set flags */ p->flags = 0; LWIP_DEBUGF(PBUF_DEBUG | LWIP_DBG_TRACE | 3, ("pbuf_alloc(length=%"U16_F") == %p\n", length, (void *)p)); return p;}/** * Shrink a pbuf chain to a desired length. * * @param p pbuf to shrink. * @param new_len desired new length of pbuf chain * * Depending on the desired length, the first few pbufs in a chain might * be skipped and left unchanged. The new last pbuf in the chain will be * resized, and any remaining pbufs will be freed. * * @note If the pbuf is ROM/REF, only the ->tot_len and ->len fields are adjusted. * @note May not be called on a packet queue. * * @note Despite its name, pbuf_realloc cannot grow the size of a pbuf (chain). */voidpbuf_realloc(struct pbuf *p, u16_t new_len){ struct pbuf *q; u16_t rem_len; /* remaining length */ s32_t grow; LWIP_ASSERT("pbuf_realloc: sane p->type", p->type == PBUF_POOL || p->type == PBUF_ROM || p->type == PBUF_RAM || p->type == PBUF_REF); /* desired length larger than current length? */ if (new_len >= p->tot_len) { /* enlarging not yet supported */ return; } /* the pbuf chain grows by (new_len - p->tot_len) bytes * (which may be negative in case of shrinking) */ grow = new_len - p->tot_len; /* first, step over any pbufs that should remain in the chain */ rem_len = new_len; q = p; /* should this pbuf be kept? */ while (rem_len > q->len) { /* decrease remaining length by pbuf length */ rem_len -= q->len; /* decrease total length indicator */ LWIP_ASSERT("grow < max_u16_t", grow < 0xffff); q->tot_len += (u16_t)grow; /* proceed to next pbuf in chain */ q = q->next; } /* we have now reached the new last pbuf (in q) */ /* rem_len == desired length for pbuf q */ /* shrink allocated memory for PBUF_RAM */ /* (other types merely adjust their length fields */ if ((q->type == PBUF_RAM) && (rem_len != q->len)) { /* reallocate and adjust the length of the pbuf that will be split */ q = mem_realloc(q, (u8_t *)q->payload - (u8_t *)q + rem_len); LWIP_ASSERT("mem_realloc give q == NULL", q != NULL); } /* adjust length fields for new last pbuf */ q->len = rem_len; q->tot_len = q->len; /* any remaining pbufs in chain? */ if (q->next != NULL) { /* free remaining pbufs in chain */ pbuf_free(q->next); } /* q is last packet in chain */ q->next = NULL;}/** * Adjusts the payload pointer to hide or reveal headers in the payload. * * Adjusts the ->payload pointer so that space for a header * (dis)appears in the pbuf payload. * * The ->payload, ->tot_len and ->len fields are adjusted. * * @param p pbuf to change the header size. * @param header_size_increment Number of bytes to increment header size which * increases the size of the pbuf. New space is on the front. * (Using a negative value decreases the header size.) * If hdr_size_inc is 0, this function does nothing and returns succesful. * * PBUF_ROM and PBUF_REF type buffers cannot have their sizes increased, so * the call will fail. A check is made that the increase in header size does * not move the payload pointer in front of the start of the buffer. * @return non-zero on failure, zero on success. * */u8_tpbuf_header(struct pbuf *p, s16_t header_size_increment){ u16_t type; void *payload; u16_t increment_magnitude; LWIP_ASSERT("p != NULL", p != NULL); if ((header_size_increment == 0) || (p == NULL)) return 0; if (header_size_increment < 0){ increment_magnitude = -header_size_increment; /* Check that we aren't going to move off the end of the pbuf */ LWIP_ERROR("increment_magnitude <= p->len", (increment_magnitude <= p->len), return 1;); } else { increment_magnitude = header_size_increment;#if 0 /* Can't assert these as some callers speculatively call pbuf_header() to see if it's OK. Will return 1 below instead. */ /* Check that we've got the correct type of pbuf to work with */ LWIP_ASSERT("p->type == PBUF_RAM || p->type == PBUF_POOL", p->type == PBUF_RAM || p->type == PBUF_POOL); /* Check that we aren't going to move off the beginning of the pbuf */ LWIP_ASSERT("p->payload - increment_magnitude >= p + SIZEOF_STRUCT_PBUF", (u8_t *)p->payload - increment_magnitude >= (u8_t *)p + SIZEOF_STRUCT_PBUF);#endif } type = p->type; /* remember current payload pointer */ payload = p->payload; /* pbuf types containing payloads? */ if (type == PBUF_RAM || type == PBUF_POOL) { /* set new payload pointer */ p->payload = (u8_t *)p->payload - header_size_increment; /* boundary check fails? */ if ((u8_t *)p->payload < (u8_t *)p + SIZEOF_STRUCT_PBUF) { LWIP_DEBUGF( PBUF_DEBUG | 2, ("pbuf_header: failed as %p < %p (not enough space for new header size)\n", (void *)p->payload, (void *)(p + 1)));\ /* restore old payload pointer */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -