⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ffc_l2proj_16.h

📁 利用C
💻 H
📖 第 1 页 / 共 5 页
字号:
  /// Initialize dof map for given cell  virtual void init_cell(const ufc::mesh& m,                         const ufc::cell& c)  {    // Do nothing  }  /// Finish initialization of dof map for cells  virtual void init_cell_finalize()  {    // Do nothing  }  /// Return the dimension of the global finite element function space  virtual unsigned int global_dimension() const  {    return __global_dimension;  }  /// Return the dimension of the local finite element function space  virtual unsigned int local_dimension() const  {    return 6;  }  // Return the geometric dimension of the coordinates this dof map provides  virtual unsigned int geometric_dimension() const  {    return 2;  }  /// Return the number of dofs on each cell facet  virtual unsigned int num_facet_dofs() const  {    return 3;  }  /// Return the number of dofs associated with each cell entity of dimension d  virtual unsigned int num_entity_dofs(unsigned int d) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Tabulate the local-to-global mapping of dofs on a cell  virtual void tabulate_dofs(unsigned int* dofs,                             const ufc::mesh& m,                             const ufc::cell& c) const  {    dofs[0] = c.entity_indices[0][0];    dofs[1] = c.entity_indices[0][1];    dofs[2] = c.entity_indices[0][2];    unsigned int offset = m.num_entities[0];    dofs[3] = offset + c.entity_indices[1][0];    dofs[4] = offset + c.entity_indices[1][1];    dofs[5] = offset + c.entity_indices[1][2];  }  /// Tabulate the local-to-local mapping from facet dofs to cell dofs  virtual void tabulate_facet_dofs(unsigned int* dofs,                                   unsigned int facet) const  {    switch ( facet )    {    case 0:      dofs[0] = 1;      dofs[1] = 2;      dofs[2] = 3;      break;    case 1:      dofs[0] = 0;      dofs[1] = 2;      dofs[2] = 4;      break;    case 2:      dofs[0] = 0;      dofs[1] = 1;      dofs[2] = 5;      break;    }  }  /// Tabulate the local-to-local mapping of dofs on entity (d, i)  virtual void tabulate_entity_dofs(unsigned int* dofs,                                    unsigned int d, unsigned int i) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Tabulate the coordinates of all dofs on a cell  virtual void tabulate_coordinates(double** coordinates,                                    const ufc::cell& c) const  {    const double * const * x = c.coordinates;    coordinates[0][0] = x[0][0];    coordinates[0][1] = x[0][1];    coordinates[1][0] = x[1][0];    coordinates[1][1] = x[1][1];    coordinates[2][0] = x[2][0];    coordinates[2][1] = x[2][1];    coordinates[3][0] = 0.5*x[1][0] + 0.5*x[2][0];    coordinates[3][1] = 0.5*x[1][1] + 0.5*x[2][1];    coordinates[4][0] = 0.5*x[0][0] + 0.5*x[2][0];    coordinates[4][1] = 0.5*x[0][1] + 0.5*x[2][1];    coordinates[5][0] = 0.5*x[0][0] + 0.5*x[1][0];    coordinates[5][1] = 0.5*x[0][1] + 0.5*x[1][1];  }  /// Return the number of sub dof maps (for a mixed element)  virtual unsigned int num_sub_dof_maps() const  {    return 1;  }  /// Create a new dof_map for sub dof map i (for a mixed element)  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const  {    return new UFC_ffc_L2proj_16BilinearForm_dof_map_1_1();  }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_ffc_L2proj_16BilinearForm_dof_map_1: public ufc::dof_map{private:  unsigned int __global_dimension;public:  /// Constructor  UFC_ffc_L2proj_16BilinearForm_dof_map_1() : ufc::dof_map()  {    __global_dimension = 0;  }  /// Destructor  virtual ~UFC_ffc_L2proj_16BilinearForm_dof_map_1()  {    // Do nothing  }  /// Return a string identifying the dof map  virtual const char* signature() const  {    return "FFC dof map for Mixed finite element: [Lagrange finite element of degree 2 on a triangle, Lagrange finite element of degree 2 on a triangle]";  }  /// Return true iff mesh entities of topological dimension d are needed  virtual bool needs_mesh_entities(unsigned int d) const  {    switch ( d )    {    case 0:      return true;      break;    case 1:      return true;      break;    case 2:      return false;      break;    }    return false;  }  /// Initialize dof map for mesh (return true iff init_cell() is needed)  virtual bool init_mesh(const ufc::mesh& m)  {    __global_dimension = 2*m.num_entities[0] + 2*m.num_entities[1];    return false;  }  /// Initialize dof map for given cell  virtual void init_cell(const ufc::mesh& m,                         const ufc::cell& c)  {    // Do nothing  }  /// Finish initialization of dof map for cells  virtual void init_cell_finalize()  {    // Do nothing  }  /// Return the dimension of the global finite element function space  virtual unsigned int global_dimension() const  {    return __global_dimension;  }  /// Return the dimension of the local finite element function space  virtual unsigned int local_dimension() const  {    return 12;  }  // Return the geometric dimension of the coordinates this dof map provides  virtual unsigned int geometric_dimension() const  {    return 2;  }  /// Return the number of dofs on each cell facet  virtual unsigned int num_facet_dofs() const  {    return 6;  }  /// Return the number of dofs associated with each cell entity of dimension d  virtual unsigned int num_entity_dofs(unsigned int d) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Tabulate the local-to-global mapping of dofs on a cell  virtual void tabulate_dofs(unsigned int* dofs,                             const ufc::mesh& m,                             const ufc::cell& c) const  {    dofs[0] = c.entity_indices[0][0];    dofs[1] = c.entity_indices[0][1];    dofs[2] = c.entity_indices[0][2];    unsigned int offset = m.num_entities[0];    dofs[3] = offset + c.entity_indices[1][0];    dofs[4] = offset + c.entity_indices[1][1];    dofs[5] = offset + c.entity_indices[1][2];    offset = offset + m.num_entities[1];    dofs[6] = offset + c.entity_indices[0][0];    dofs[7] = offset + c.entity_indices[0][1];    dofs[8] = offset + c.entity_indices[0][2];    offset = offset + m.num_entities[0];    dofs[9] = offset + c.entity_indices[1][0];    dofs[10] = offset + c.entity_indices[1][1];    dofs[11] = offset + c.entity_indices[1][2];  }  /// Tabulate the local-to-local mapping from facet dofs to cell dofs  virtual void tabulate_facet_dofs(unsigned int* dofs,                                   unsigned int facet) const  {    switch ( facet )    {    case 0:      dofs[0] = 1;      dofs[1] = 2;      dofs[2] = 3;      dofs[3] = 7;      dofs[4] = 8;      dofs[5] = 9;      break;    case 1:      dofs[0] = 0;      dofs[1] = 2;      dofs[2] = 4;      dofs[3] = 6;      dofs[4] = 8;      dofs[5] = 10;      break;    case 2:      dofs[0] = 0;      dofs[1] = 1;      dofs[2] = 5;      dofs[3] = 6;      dofs[4] = 7;      dofs[5] = 11;      break;    }  }  /// Tabulate the local-to-local mapping of dofs on entity (d, i)  virtual void tabulate_entity_dofs(unsigned int* dofs,                                    unsigned int d, unsigned int i) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Tabulate the coordinates of all dofs on a cell  virtual void tabulate_coordinates(double** coordinates,                                    const ufc::cell& c) const  {    const double * const * x = c.coordinates;    coordinates[0][0] = x[0][0];    coordinates[0][1] = x[0][1];    coordinates[1][0] = x[1][0];    coordinates[1][1] = x[1][1];    coordinates[2][0] = x[2][0];    coordinates[2][1] = x[2][1];    coordinates[3][0] = 0.5*x[1][0] + 0.5*x[2][0];    coordinates[3][1] = 0.5*x[1][1] + 0.5*x[2][1];    coordinates[4][0] = 0.5*x[0][0] + 0.5*x[2][0];    coordinates[4][1] = 0.5*x[0][1] + 0.5*x[2][1];    coordinates[5][0] = 0.5*x[0][0] + 0.5*x[1][0];    coordinates[5][1] = 0.5*x[0][1] + 0.5*x[1][1];    coordinates[6][0] = x[0][0];    coordinates[6][1] = x[0][1];    coordinates[7][0] = x[1][0];    coordinates[7][1] = x[1][1];    coordinates[8][0] = x[2][0];    coordinates[8][1] = x[2][1];    coordinates[9][0] = 0.5*x[1][0] + 0.5*x[2][0];    coordinates[9][1] = 0.5*x[1][1] + 0.5*x[2][1];    coordinates[10][0] = 0.5*x[0][0] + 0.5*x[2][0];    coordinates[10][1] = 0.5*x[0][1] + 0.5*x[2][1];    coordinates[11][0] = 0.5*x[0][0] + 0.5*x[1][0];    coordinates[11][1] = 0.5*x[0][1] + 0.5*x[1][1];  }  /// Return the number of sub dof maps (for a mixed element)  virtual unsigned int num_sub_dof_maps() const  {    return 2;  }  /// Create a new dof_map for sub dof map i (for a mixed element)  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const  {    switch ( i )    {    case 0:      return new UFC_ffc_L2proj_16BilinearForm_dof_map_1_0();      break;    case 1:      return new UFC_ffc_L2proj_16BilinearForm_dof_map_1_1();      break;    }    return 0;  }};/// This class defines the interface for the tabulation of the cell/// tensor corresponding to the local contribution to a form from/// the integral over a cell.class UFC_ffc_L2proj_16BilinearForm_cell_integral_0: public ufc::cell_integral{public:  /// Constructor  UFC_ffc_L2proj_16BilinearForm_cell_integral_0() : ufc::cell_integral()  {    // Do nothing  }  /// Destructor  virtual ~UFC_ffc_L2proj_16BilinearForm_cell_integral_0()  {    // Do nothing  }  /// Tabulate the tensor for the contribution from a local cell  virtual void tabulate_tensor(double* A,                               const double * const * w,                               const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * x = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = x[1][0] - x[0][0];    const double J_01 = x[2][0] - x[0][0];    const double J_10 = x[1][1] - x[0][1];    const double J_11 = x[2][1] - x[0][1];          // Compute determinant of Jacobian    double detJ = J_00*J_11 - J_01*J_10;          // Compute inverse of Jacobian        // Set scale factor    const double det = std::abs(detJ);        // Compute geometry tensors    const double G0_ = det;        // Compute element tensor    A[0] = 0.0166666666666667*G0_;    A[1] = -0.00277777777777777*G0_;    A[2] = -0.00277777777777778*G0_;    A[3] = -0.0111111111111111*G0_;    A[4] = 0;    A[5] = 0;    A[6] = 0;    A[7] = 0;    A[8] = 0;    A[9] = 0;    A[10] = 0;    A[11] = 0;    A[12] = -0.00277777777777777*G0_;    A[13] = 0.0166666666666666*G0_;    A[14] = -0.00277777777777777*G0_;    A[15] = 0;    A[16] = -0.0111111111111111*G0_;    A[17] = 0;    A[18] = 0;    A[19] = 0;    A[20] = 0;    A[21] = 0;    A[22] = 0;    A[23] = 0;    A[24] = -0.00277777777777778*G0_;    A[25] = -0.00277777777777777*G0_;    A[26] = 0.0166666666666666*G0_;    A[27] = 0;    A[28] = 0;    A[29] = -0.0111111111111111*G0_;    A[30] = 0;    A[31] = 0;    A[32] = 0;    A[33] = 0;    A[34] = 0;    A[35] = 0;    A[36] = -0.0111111111111111*G0_;    A[37] = 0;    A[38] = 0;    A[39] = 0.0888888888888888*G0_;    A[40] = 0.0444444444444444*G0_;    A[41] = 0.0444444444444444*G0_;    A[42] = 0;    A[43] = 0;    A[44] = 0;    A[45] = 0;    A[46] = 0;    A[47] = 0;    A[48] = 0;    A[49] = -0.0111111111111111*G0_;    A[50] = 0;    A[51] = 0.0444444444444444*G0_;    A[52] = 0.0888888888888888*G0_;    A[53] = 0.0444444444444444*G0_;    A[54] = 0;    A[55] = 0;    A[56] = 0;    A[57] = 0;    A[58] = 0;    A[59] = 0;    A[60] = 0;    A[61] = 0;    A

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -