⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 main.cpp

📁 利用C
💻 CPP
字号:
// Copyright (C) 2007 Anders Logg and Marie Rognes.// Licensed under the GNU LGPL Version 2.1.//// First added:  2007-04-20// Last changed: 2007-05-17//// This demo program solves the mixed formulation of// Poisson's equation:////     sigma + grad(u) = 0//          div(sigma) = f//// The corresponding weak (variational problem)////     <tau, sigma> - <div(tau), u> = 0       for all tau//                  <w, div(sigma)> = <w, f>  for all w//// is solved using BDM (Brezzi-Douglas-Marini) elements// of degree q (tau, sigma) and DG (discontinuous Galerkin)// elements of degree q - 1 for (w, u).#include <dolfin.h>#include "MixedPoisson.h"using namespace dolfin;int main(){  // Source term  class Source : public Function  {  public:        Source(Mesh& mesh) : Function(mesh) {}    real eval(const real* x) const    {      real dx = x[0] - 0.5;      real dy = x[1] - 0.5;      return 500.0*exp(-(dx*dx + dy*dy)/0.02);    }  };  // Create mesh and source term  UnitSquare mesh(16, 16);  Source f(mesh);    // Define PDE  MixedPoissonBilinearForm a;  MixedPoissonLinearForm L(f);  LinearPDE pde(a, L, mesh);  // Solve PDE  Function sigma;  Function u;  pde.solve(sigma, u);  // Plot solution  plot(sigma);  plot(u);  // Save solution to file  File f0("sigma.xml");  File f1("u.xml");  f0 << sigma;  f1 << u;  // Save solution to pvd format  File f3("sigma.pvd");  File f4("u.pvd");  f3 << sigma;  f4 << u;  return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -