📄 demo.py
字号:
# This demo program solves the mixed formulation of# Poisson's equation:## sigma + grad(u) = 0# div(sigma) = f## The corresponding weak (variational problem)## <tau, sigma> - <div(tau), u> = 0 for all tau# <w, div(sigma)> = <w, f> for all w## is solved using BDM (Brezzi-Douglas-Marini) elements# of degree q (tau, sigma) and DG (discontinuous Galerkin)# elements of degree q - 1 for (w, u).## Original implementation: ../cpp/main.cpp by Anders Logg and Marie Rognes#__author__ = "Kristian B. Oelgaard (k.b.oelgaard@tudelft.nl)"__date__ = "2007-11-14 -- 2007-11-28"__copyright__ = "Copyright (C) 2007 Kristian B. Oelgaard"__license__ = "GNU LGPL Version 2.1"from dolfin import *## THIS DEMO WORKS, BUT ...# when extracting subfunctions SWIG issues the following warning:# swig/python detected a memory leak of type 'SubFunction *', no destructor found.## Create elements and meshq = 1BDM = FiniteElement("Brezzi-Douglas-Marini", "triangle", q)DG = FiniteElement("Discontinuous Lagrange", "triangle", q - 1)mixed_element = BDM + DGmesh = UnitSquare(16, 16)# Source termclass Source(Function): def __init__(self, element, mesh): Function.__init__(self, element, mesh) def eval(self, values, x): dx = x[0] - 0.5 dy = x[1] - 0.5 values[0] = 500.0*exp(-(dx*dx + dy*dy)/0.02)(tau, w) = TestFunctions(mixed_element)(sigma, u) = TrialFunctions(mixed_element)f = Source(DG, mesh)a = (dot(tau, sigma) - div(tau)*u + w*div(sigma))*dxL = w*f*dx# Define PDEpde = LinearPDE(a, L, mesh)# Solve PDE and get sub-functions(sigma, u) = pde.solve().split()# Save solution to filef0 = File("sigma.xml")f1 = File("u.xml")f0 << sigmaf1 << u# Save solution to pvd formatf3 = File("sigma.pvd")f4 = File("u.pvd")f3 << sigmaf4 << u# Plot solutionplot(sigma)plot(u)interactive()
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -