📄 poisson.h
字号:
{ // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 2; } // Return the geometric dimension of the coordinates this dof map provides virtual unsigned int geometric_dimension() const { return 1; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 1; } /// Return the number of dofs associated with each cell entity of dimension d virtual unsigned int num_entity_dofs(unsigned int d) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = c.entity_indices[0][0]; dofs[1] = c.entity_indices[0][1]; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: dofs[0] = 0; break; case 1: dofs[0] = 1; break; } } /// Tabulate the local-to-local mapping of dofs on entity (d, i) virtual void tabulate_entity_dofs(unsigned int* dofs, unsigned int d, unsigned int i) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = x[0][0]; coordinates[1][0] = x[1][0]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new UFC_PoissonBilinearForm_dof_map_1(); }};/// This class defines the interface for the tabulation of the cell/// tensor corresponding to the local contribution to a form from/// the integral over a cell.class UFC_PoissonBilinearForm_cell_integral_0: public ufc::cell_integral{public: /// Constructor UFC_PoissonBilinearForm_cell_integral_0() : ufc::cell_integral() { // Do nothing } /// Destructor virtual ~UFC_PoissonBilinearForm_cell_integral_0() { // Do nothing } /// Tabulate the tensor for the contribution from a local cell virtual void tabulate_tensor(double* A, const double * const * w, const ufc::cell& c) const { // Extract vertex coordinates const double * const * x = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = x[1][0] - x[0][0]; // Compute determinant of Jacobian double detJ = J_00; // Compute inverse of Jacobian const double Jinv_00 = 1.0 / detJ; // Set scale factor const double det = std::abs(detJ); // Compute geometry tensors const double G0_0_0 = det*Jinv_00*Jinv_00; // Compute element tensor A[0] = 0.999999999999999*G0_0_0; A[1] = -0.999999999999999*G0_0_0; A[2] = -0.999999999999999*G0_0_0; A[3] = 0.999999999999999*G0_0_0; }};/// This class defines the interface for the assembly of the global/// tensor corresponding to a form with r + n arguments, that is, a/// mapping////// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R////// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r/// global tensor A is defined by////// A = a(V1, V2, ..., Vr, w1, w2, ..., wn),////// where each argument Vj represents the application to the/// sequence of basis functions of Vj and w1, w2, ..., wn are given/// fixed functions (coefficients).class UFC_PoissonBilinearForm: public ufc::form{public: /// Constructor UFC_PoissonBilinearForm() : ufc::form() { // Do nothing } /// Destructor virtual ~UFC_PoissonBilinearForm() { // Do nothing } /// Return a string identifying the form virtual const char* signature() const { return "(dXa0[0]/dx0)(dXa1[0]/dx0) | ((d/dXa0[0])vi0[0, 1])*((d/dXa1[0])vi1[0, 1])*dX(0)"; } /// Return the rank of the global tensor (r) virtual unsigned int rank() const { return 2; } /// Return the number of coefficients (n) virtual unsigned int num_coefficients() const { return 0; } /// Return the number of cell integrals virtual unsigned int num_cell_integrals() const { return 1; } /// Return the number of exterior facet integrals virtual unsigned int num_exterior_facet_integrals() const { return 0; } /// Return the number of interior facet integrals virtual unsigned int num_interior_facet_integrals() const { return 0; } /// Create a new finite element for argument function i virtual ufc::finite_element* create_finite_element(unsigned int i) const { switch ( i ) { case 0: return new UFC_PoissonBilinearForm_finite_element_0(); break; case 1: return new UFC_PoissonBilinearForm_finite_element_1(); break; } return 0; } /// Create a new dof map for argument function i virtual ufc::dof_map* create_dof_map(unsigned int i) const { switch ( i ) { case 0: return new UFC_PoissonBilinearForm_dof_map_0(); break; case 1: return new UFC_PoissonBilinearForm_dof_map_1(); break; } return 0; } /// Create a new cell integral on sub domain i virtual ufc::cell_integral* create_cell_integral(unsigned int i) const { return new UFC_PoissonBilinearForm_cell_integral_0(); } /// Create a new exterior facet integral on sub domain i virtual ufc::exterior_facet_integral* create_exterior_facet_integral(unsigned int i) const { return 0; } /// Create a new interior facet integral on sub domain i virtual ufc::interior_facet_integral* create_interior_facet_integral(unsigned int i) const { return 0; }};/// This class defines the interface for a finite element.class UFC_PoissonLinearForm_finite_element_0: public ufc::finite_element{public: /// Constructor UFC_PoissonLinearForm_finite_element_0() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_PoissonLinearForm_finite_element_0() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Lagrange finite element of degree 1 on a interval"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::interval; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 2; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 0; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 1; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; // Get coordinates and map to the reference (UFC) element double x = (coordinates[0] - element_coordinates[0][0]) / J_00; // No mapping needed for 1D. // Reset values *values = 0; // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings not needed for 1D // Compute psitilde_a const double psitilde_a_0 = 1; const double psitilde_a_1 = x; // Compute basisvalues const double basisvalue0 = 0.707106781186548*psitilde_a_0; const double basisvalue1 = 1.22474487139159*psitilde_a_1; // Table(s) of coefficients const static double coefficients0[2][2] = \ {{0.707106781186547, -0.408248290463863}, {0.707106781186547, 0.408248290463863}}; // Extract relevant coefficients const double coeff0_0 = coefficients0[dof][0]; const double coeff0_1 = coefficients0[dof][1]; // Compute value(s) *values = coeff0_0*basisvalue0 + coeff0_1*basisvalue1; } /// Evaluate all basis functions at given point in cell virtual void evaluate_basis_all(double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented."); } /// Evaluate order n derivatives of basis function i at given point in cell virtual void evaluate_basis_derivatives(unsigned int i, unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; // Get coordinates and map to the reference (UFC) element double x = (coordinates[0] - element_coordinates[0][0]) / J_00; // No mapping needed for 1D. // Compute number of derivatives unsigned int num_derivatives = 1; for (unsigned int j = 0; j < n; j++) num_derivatives *= 1; // Declare pointer to two dimensional array that holds combinations of derivatives and initialise unsigned int **combinations = new unsigned int *[num_derivatives]; for (unsigned int j = 0; j < num_derivatives; j++) { combinations[j] = new unsigned int [n]; for (unsigned int k = 0; k < n; k++) combinations[j][k] = 0; } // Generate combinations of derivatives for (unsigned int row = 1; row < num_derivatives; row++) { for (unsigned int num = 0; num < row; num++) { for (unsigned int col = n-1; col+1 > 0; col--) { if (combinations[row][col] + 1 > 0) combinations[row][col] = 0; else { combinations[row][col] += 1; break; } } } } // Compute inverse of Jacobian const double Jinv[1][1] = {{1.0 / J_00}}; // Declare transformation matrix // Declare pointer to two dimensional array and initialise double **transform = new double *[num_derivatives]; for (unsigned int j = 0; j < num_derivatives; j++) { transform[j] = new double [num_derivatives]; for (unsigned int k = 0; k < num_derivatives; k++) transform[j][k] = 1; } // Construct transformation matrix for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { for (unsigned int k = 0; k < n; k++) transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; } } // Reset values for (unsigned int j = 0; j < 1*num_derivatives; j++) values[j] = 0; // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings not needed for 1D // Compute psitilde_a const double psitilde_a_0 = 1; const double psitilde_a_1 = x; // Compute basisvalues const double basisvalue0 = 0.707106781186548*psitilde_a_0; const double basisvalue1 = 1.22474487139159*psitilde_a_1; // Table(s) of coefficients const static double coefficients0[2][2] = \ {{0.707106781186547, -0.408248290463863}, {0.707106781186547, 0.408248290463863}};
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -