📄 poisson.h
字号:
// This code conforms with the UFC specification version 1.0// and was automatically generated by FFC version 0.5.0.//// Warning: This code was generated with the option '-l dolfin'// and contains DOLFIN-specific wrappers that depend on DOLFIN.#ifndef __POISSON_H#define __POISSON_H#include <cmath>#include <stdexcept>#include <fstream>#include <ufc.h>/// This class defines the interface for a finite element.class UFC_PoissonBilinearForm_finite_element_0: public ufc::finite_element{public: /// Constructor UFC_PoissonBilinearForm_finite_element_0() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_PoissonBilinearForm_finite_element_0() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Lagrange finite element of degree 1 on a interval"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::interval; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 2; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 0; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 1; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; // Get coordinates and map to the reference (UFC) element double x = (coordinates[0] - element_coordinates[0][0]) / J_00; // No mapping needed for 1D. // Reset values *values = 0; // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings not needed for 1D // Compute psitilde_a const double psitilde_a_0 = 1; const double psitilde_a_1 = x; // Compute basisvalues const double basisvalue0 = 0.707106781186548*psitilde_a_0; const double basisvalue1 = 1.22474487139159*psitilde_a_1; // Table(s) of coefficients const static double coefficients0[2][2] = \ {{0.707106781186547, -0.408248290463863}, {0.707106781186547, 0.408248290463863}}; // Extract relevant coefficients const double coeff0_0 = coefficients0[dof][0]; const double coeff0_1 = coefficients0[dof][1]; // Compute value(s) *values = coeff0_0*basisvalue0 + coeff0_1*basisvalue1; } /// Evaluate all basis functions at given point in cell virtual void evaluate_basis_all(double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented."); } /// Evaluate order n derivatives of basis function i at given point in cell virtual void evaluate_basis_derivatives(unsigned int i, unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; // Get coordinates and map to the reference (UFC) element double x = (coordinates[0] - element_coordinates[0][0]) / J_00; // No mapping needed for 1D. // Compute number of derivatives unsigned int num_derivatives = 1; for (unsigned int j = 0; j < n; j++) num_derivatives *= 1; // Declare pointer to two dimensional array that holds combinations of derivatives and initialise unsigned int **combinations = new unsigned int *[num_derivatives]; for (unsigned int j = 0; j < num_derivatives; j++) { combinations[j] = new unsigned int [n]; for (unsigned int k = 0; k < n; k++) combinations[j][k] = 0; } // Generate combinations of derivatives for (unsigned int row = 1; row < num_derivatives; row++) { for (unsigned int num = 0; num < row; num++) { for (unsigned int col = n-1; col+1 > 0; col--) { if (combinations[row][col] + 1 > 0) combinations[row][col] = 0; else { combinations[row][col] += 1; break; } } } } // Compute inverse of Jacobian const double Jinv[1][1] = {{1.0 / J_00}}; // Declare transformation matrix // Declare pointer to two dimensional array and initialise double **transform = new double *[num_derivatives]; for (unsigned int j = 0; j < num_derivatives; j++) { transform[j] = new double [num_derivatives]; for (unsigned int k = 0; k < num_derivatives; k++) transform[j][k] = 1; } // Construct transformation matrix for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { for (unsigned int k = 0; k < n; k++) transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; } } // Reset values for (unsigned int j = 0; j < 1*num_derivatives; j++) values[j] = 0; // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings not needed for 1D // Compute psitilde_a const double psitilde_a_0 = 1; const double psitilde_a_1 = x; // Compute basisvalues const double basisvalue0 = 0.707106781186548*psitilde_a_0; const double basisvalue1 = 1.22474487139159*psitilde_a_1; // Table(s) of coefficients const static double coefficients0[2][2] = \ {{0.707106781186547, -0.408248290463863}, {0.707106781186547, 0.408248290463863}}; // Interesting (new) part // Tables of derivatives of the polynomial base (transpose) const static double dmats0[2][2] = \ {{0, 0}, {3.46410161513775, 0}}; // Compute reference derivatives // Declare pointer to array of derivatives on FIAT element double *derivatives = new double [num_derivatives]; // Declare coefficients double coeff0_0 = 0; double coeff0_1 = 0; // Declare new coefficients double new_coeff0_0 = 0; double new_coeff0_1 = 0; // Loop possible derivatives for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++) { // Get values from coefficients array new_coeff0_0 = coefficients0[dof][0]; new_coeff0_1 = coefficients0[dof][1]; // Loop derivative order for (unsigned int j = 0; j < n; j++) { // Update old coefficients coeff0_0 = new_coeff0_0; coeff0_1 = new_coeff0_1; if(combinations[deriv_num][j] == 0) { new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0]; new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1]; } } // Compute derivatives on reference element as dot product of coefficients and basisvalues derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1; } // Transform derivatives back to physical element for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { values[row] += transform[row][col]*derivatives[col]; } } // Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives and transform for (unsigned int row = 0; row < num_derivatives; row++) { delete [] combinations[row]; delete [] transform[row]; } delete [] combinations; delete [] transform; } /// Evaluate order n derivatives of all basis functions at given point in cell virtual void evaluate_basis_derivatives_all(unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented."); } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { // The reference points, direction and weights: const static double X[2][1][1] = {{{0}}, {{1}}}; const static double W[2][1] = {{1}, {1}}; const static double D[2][1][1] = {{{1}}, {{1}}}; const double * const * x = c.coordinates; double result = 0.0; // Iterate over the points: // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0][0]; const double w1 = X[i][0][0]; // Compute affine mapping y = F(X) double y[1]; y[0] = w0*x[0][0] + w1*x[1][0]; // Evaluate function at physical points double values[1]; f.evaluate(values, y, c); // Map function values using appropriate mapping // Affine map: Do nothing // Note that we do not map the weights (yet). // Take directional components for(int k = 0; k < 1; k++) result += values[k]*D[i][0][k]; // Multiply by weights result *= W[i][0]; return result; } /// Evaluate linear functionals for all dofs on the function f virtual void evaluate_dofs(double* values, const ufc::function& f, const ufc::cell& c) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Evaluate at vertices and use affine mapping vertex_values[0] = dof_values[0]; vertex_values[1] = dof_values[1]; } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 1; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new UFC_PoissonBilinearForm_finite_element_0(); }};/// This class defines the interface for a finite element.class UFC_PoissonBilinearForm_finite_element_1: public ufc::finite_element{public: /// Constructor UFC_PoissonBilinearForm_finite_element_1() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_PoissonBilinearForm_finite_element_1() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Lagrange finite element of degree 1 on a interval"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::interval; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 2; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 0; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 1; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; // Get coordinates and map to the reference (UFC) element double x = (coordinates[0] - element_coordinates[0][0]) / J_00; // No mapping needed for 1D. // Reset values *values = 0; // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings not needed for 1D // Compute psitilde_a const double psitilde_a_0 = 1; const double psitilde_a_1 = x; // Compute basisvalues const double basisvalue0 = 0.707106781186548*psitilde_a_0; const double basisvalue1 = 1.22474487139159*psitilde_a_1; // Table(s) of coefficients const static double coefficients0[2][2] = \ {{0.707106781186547, -0.408248290463863}, {0.707106781186547, 0.408248290463863}}; // Extract relevant coefficients const double coeff0_0 = coefficients0[dof][0]; const double coeff0_1 = coefficients0[dof][1]; // Compute value(s) *values = coeff0_0*basisvalue0 + coeff0_1*basisvalue1; } /// Evaluate all basis functions at given point in cell virtual void evaluate_basis_all(double* values, const double* coordinates,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -