📄 demo.py
字号:
# This demo program solves Poisson's equation## - div grad u(x) = f(x)## on the unit interval with source f given by## f(x) = 9.0*DOLFIN_PI*DOLFIN_PI*sin(3.0*DOLFIN_PI*x[0]);## and boundary conditions given by## u(x) = 0 for x = 0# du/dx = 0 for x = 1__author__ = "Kristian B. Oelgaard (k.b.oelgaard@tudelft.nl)"__date__ = "2007-11-28 -- 2008-04-28"__copyright__ = "Copyright (C) 2007 Kristian B. Oelgaard"__license__ = "GNU LGPL Version 2.1"from dolfin import *# Create mesh and finite elementmesh = UnitInterval(50)element = FiniteElement("Lagrange", "interval", 1)# Source termclass Source(Function): def __init__(self, element, mesh): Function.__init__(self, element, mesh) def eval(self, values, x): values[0] = 9.0*DOLFIN_PI*DOLFIN_PI*sin(3.0*DOLFIN_PI*x[0])# Sub domain for Dirichlet boundary conditionclass DirichletBoundary(SubDomain): def inside(self, x, on_boundary): return bool(on_boundary) and bool(x[0] < DOLFIN_EPS)# Define variational problemv = TestFunction(element)u = TrialFunction(element)f = Source(element, mesh)a = dot(grad(v), grad(u))*dxL = v*f*dx# Define boundary conditionu0 = Function(mesh, 0.0)boundary = DirichletBoundary()bc = DirichletBC(u0, mesh, boundary)# Solve PDE and plot solutionpde = LinearPDE(a, L, mesh, bc)u = pde.solve()# Save solution to filefile = File("poisson.pvd")file << u# Plot solutionplot(u, interactive=True)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -