⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 poisson3d_3.h

📁 利用C
💻 H
📖 第 1 页 / 共 5 页
字号:
    const double J_21 = element_coordinates[2][2] - element_coordinates[0][2];    const double J_22 = element_coordinates[3][2] - element_coordinates[0][2];          // Compute sub determinants    const double d00 = J_11*J_22 - J_12*J_21;    const double d01 = J_12*J_20 - J_10*J_22;    const double d02 = J_10*J_21 - J_11*J_20;        const double d10 = J_02*J_21 - J_01*J_22;    const double d11 = J_00*J_22 - J_02*J_20;    const double d12 = J_01*J_20 - J_00*J_21;        const double d20 = J_01*J_12 - J_02*J_11;    const double d21 = J_02*J_10 - J_00*J_12;    const double d22 = J_00*J_11 - J_01*J_10;          // Compute determinant of Jacobian    double detJ = J_00*d00 + J_10*d10 + J_20*d20;        // Compute inverse of Jacobian        // Compute constants    const double C0 = d00*(element_coordinates[0][0] - element_coordinates[2][0] - element_coordinates[3][0]) \                    + d10*(element_coordinates[0][1] - element_coordinates[2][1] - element_coordinates[3][1]) \                    + d20*(element_coordinates[0][2] - element_coordinates[2][2] - element_coordinates[3][2]);        const double C1 = d01*(element_coordinates[0][0] - element_coordinates[1][0] - element_coordinates[3][0]) \                    + d11*(element_coordinates[0][1] - element_coordinates[1][1] - element_coordinates[3][1]) \                    + d21*(element_coordinates[0][2] - element_coordinates[1][2] - element_coordinates[3][2]);        const double C2 = d02*(element_coordinates[0][0] - element_coordinates[1][0] - element_coordinates[2][0]) \                    + d12*(element_coordinates[0][1] - element_coordinates[1][1] - element_coordinates[2][1]) \                    + d22*(element_coordinates[0][2] - element_coordinates[1][2] - element_coordinates[2][2]);        // Get coordinates and map to the UFC reference element    double x = (C0 + d00*coordinates[0] + d10*coordinates[1] + d20*coordinates[2]) / detJ;    double y = (C1 + d01*coordinates[0] + d11*coordinates[1] + d21*coordinates[2]) / detJ;    double z = (C2 + d02*coordinates[0] + d12*coordinates[1] + d22*coordinates[2]) / detJ;        // Map coordinates to the reference cube    if (std::abs(y + z - 1.0) < 1e-14)      x = 1.0;    else      x = -2.0 * x/(y + z - 1.0) - 1.0;    if (std::abs(z - 1.0) < 1e-14)      y = -1.0;    else      y = 2.0 * y/(1.0 - z) - 1.0;    z = 2.0 * z - 1.0;        // Compute number of derivatives    unsigned int num_derivatives = 1;        for (unsigned int j = 0; j < n; j++)      num_derivatives *= 3;            // Declare pointer to two dimensional array that holds combinations of derivatives and initialise    unsigned int **combinations = new unsigned int *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      combinations[j] = new unsigned int [n];      for (unsigned int k = 0; k < n; k++)        combinations[j][k] = 0;    }            // Generate combinations of derivatives    for (unsigned int row = 1; row < num_derivatives; row++)    {      for (unsigned int num = 0; num < row; num++)      {        for (unsigned int col = n-1; col+1 > 0; col--)        {          if (combinations[row][col] + 1 > 2)            combinations[row][col] = 0;          else          {            combinations[row][col] += 1;            break;          }        }      }    }        // Compute inverse of Jacobian    const double Jinv[3][3] ={{d00 / detJ, d10 / detJ, d20 / detJ}, {d01 / detJ, d11 / detJ, d21 / detJ}, {d02 / detJ, d12 / detJ, d22 / detJ}};        // Declare transformation matrix    // Declare pointer to two dimensional array and initialise    double **transform = new double *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      transform[j] = new double [num_derivatives];      for (unsigned int k = 0; k < num_derivatives; k++)        transform[j][k] = 1;    }        // Construct transformation matrix    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        for (unsigned int k = 0; k < n; k++)          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];      }    }        // Reset values    for (unsigned int j = 0; j < 1*num_derivatives; j++)      values[j] = 0;        // Map degree of freedom to element degree of freedom    const unsigned int dof = i;        // Generate scalings    const double scalings_y_0 = 1;    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);    const double scalings_y_2 = scalings_y_1*(0.5 - 0.5*y);    const double scalings_y_3 = scalings_y_2*(0.5 - 0.5*y);    const double scalings_z_0 = 1;    const double scalings_z_1 = scalings_z_0*(0.5 - 0.5*z);    const double scalings_z_2 = scalings_z_1*(0.5 - 0.5*z);    const double scalings_z_3 = scalings_z_2*(0.5 - 0.5*z);        // Compute psitilde_a    const double psitilde_a_0 = 1;    const double psitilde_a_1 = x;    const double psitilde_a_2 = 1.5*x*psitilde_a_1 - 0.5*psitilde_a_0;    const double psitilde_a_3 = 1.66666666666667*x*psitilde_a_2 - 0.666666666666667*psitilde_a_1;        // Compute psitilde_bs    const double psitilde_bs_0_0 = 1;    const double psitilde_bs_0_1 = 1.5*y + 0.5;    const double psitilde_bs_0_2 = 0.111111111111111*psitilde_bs_0_1 + 1.66666666666667*y*psitilde_bs_0_1 - 0.555555555555556*psitilde_bs_0_0;    const double psitilde_bs_0_3 = 0.05*psitilde_bs_0_2 + 1.75*y*psitilde_bs_0_2 - 0.7*psitilde_bs_0_1;    const double psitilde_bs_1_0 = 1;    const double psitilde_bs_1_1 = 2.5*y + 1.5;    const double psitilde_bs_1_2 = 0.54*psitilde_bs_1_1 + 2.1*y*psitilde_bs_1_1 - 0.56*psitilde_bs_1_0;    const double psitilde_bs_2_0 = 1;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -