⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 poisson3d_3.h

📁 利用C
💻 H
📖 第 1 页 / 共 5 页
字号:
// This code conforms with the UFC specification version 1.0// and was automatically generated by FFC version 0.5.0.//// Warning: This code was generated with the option '-l dolfin'// and contains DOLFIN-specific wrappers that depend on DOLFIN.#ifndef __POISSON3D_3_H#define __POISSON3D_3_H#include <cmath>#include <stdexcept>#include <fstream>#include <ufc.h>/// This class defines the interface for a finite element.class UFC_Poisson3D_3BilinearForm_finite_element_0: public ufc::finite_element{public:  /// Constructor  UFC_Poisson3D_3BilinearForm_finite_element_0() : ufc::finite_element()  {    // Do nothing  }  /// Destructor  virtual ~UFC_Poisson3D_3BilinearForm_finite_element_0()  {    // Do nothing  }  /// Return a string identifying the finite element  virtual const char* signature() const  {    return "Lagrange finite element of degree 3 on a tetrahedron";  }  /// Return the cell shape  virtual ufc::shape cell_shape() const  {    return ufc::tetrahedron;  }  /// Return the dimension of the finite element function space  virtual unsigned int space_dimension() const  {    return 20;  }  /// Return the rank of the value space  virtual unsigned int value_rank() const  {    return 0;  }  /// Return the dimension of the value space for axis i  virtual unsigned int value_dimension(unsigned int i) const  {    return 1;  }  /// Evaluate basis function i at given point in cell  virtual void evaluate_basis(unsigned int i,                              double* values,                              const double* coordinates,                              const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * element_coordinates = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];    const double J_02 = element_coordinates[3][0] - element_coordinates[0][0];    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];    const double J_12 = element_coordinates[3][1] - element_coordinates[0][1];    const double J_20 = element_coordinates[1][2] - element_coordinates[0][2];    const double J_21 = element_coordinates[2][2] - element_coordinates[0][2];    const double J_22 = element_coordinates[3][2] - element_coordinates[0][2];          // Compute sub determinants    const double d00 = J_11*J_22 - J_12*J_21;    const double d01 = J_12*J_20 - J_10*J_22;    const double d02 = J_10*J_21 - J_11*J_20;        const double d10 = J_02*J_21 - J_01*J_22;    const double d11 = J_00*J_22 - J_02*J_20;    const double d12 = J_01*J_20 - J_00*J_21;        const double d20 = J_01*J_12 - J_02*J_11;    const double d21 = J_02*J_10 - J_00*J_12;    const double d22 = J_00*J_11 - J_01*J_10;          // Compute determinant of Jacobian    double detJ = J_00*d00 + J_10*d10 + J_20*d20;        // Compute inverse of Jacobian        // Compute constants    const double C0 = d00*(element_coordinates[0][0] - element_coordinates[2][0] - element_coordinates[3][0]) \                    + d10*(element_coordinates[0][1] - element_coordinates[2][1] - element_coordinates[3][1]) \                    + d20*(element_coordinates[0][2] - element_coordinates[2][2] - element_coordinates[3][2]);        const double C1 = d01*(element_coordinates[0][0] - element_coordinates[1][0] - element_coordinates[3][0]) \                    + d11*(element_coordinates[0][1] - element_coordinates[1][1] - element_coordinates[3][1]) \                    + d21*(element_coordinates[0][2] - element_coordinates[1][2] - element_coordinates[3][2]);        const double C2 = d02*(element_coordinates[0][0] - element_coordinates[1][0] - element_coordinates[2][0]) \                    + d12*(element_coordinates[0][1] - element_coordinates[1][1] - element_coordinates[2][1]) \                    + d22*(element_coordinates[0][2] - element_coordinates[1][2] - element_coordinates[2][2]);        // Get coordinates and map to the UFC reference element    double x = (C0 + d00*coordinates[0] + d10*coordinates[1] + d20*coordinates[2]) / detJ;    double y = (C1 + d01*coordinates[0] + d11*coordinates[1] + d21*coordinates[2]) / detJ;    double z = (C2 + d02*coordinates[0] + d12*coordinates[1] + d22*coordinates[2]) / detJ;        // Map coordinates to the reference cube    if (std::abs(y + z - 1.0) < 1e-14)      x = 1.0;    else      x = -2.0 * x/(y + z - 1.0) - 1.0;    if (std::abs(z - 1.0) < 1e-14)      y = -1.0;    else      y = 2.0 * y/(1.0 - z) - 1.0;    z = 2.0 * z - 1.0;        // Reset values    *values = 0;        // Map degree of freedom to element degree of freedom    const unsigned int dof = i;        // Generate scalings    const double scalings_y_0 = 1;    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);    const double scalings_y_2 = scalings_y_1*(0.5 - 0.5*y);    const double scalings_y_3 = scalings_y_2*(0.5 - 0.5*y);    const double scalings_z_0 = 1;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -