⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 poisson2d_4.h

📁 利用C
💻 H
📖 第 1 页 / 共 5 页
字号:
    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");  }  /// Evaluate order n derivatives of basis function i at given point in cell  virtual void evaluate_basis_derivatives(unsigned int i,                                          unsigned int n,                                          double* values,                                          const double* coordinates,                                          const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * element_coordinates = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];          // Compute determinant of Jacobian    const double detJ = J_00*J_11 - J_01*J_10;        // Compute inverse of Jacobian        // Get coordinates and map to the reference (UFC) element    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\                element_coordinates[0][0]*element_coordinates[2][1] +\                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\                element_coordinates[1][0]*element_coordinates[0][1] -\                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;        // Map coordinates to the reference square    if (std::abs(y - 1.0) < 1e-14)      x = -1.0;    else      x = 2.0 *x/(1.0 - y) - 1.0;    y = 2.0*y - 1.0;        // Compute number of derivatives    unsigned int num_derivatives = 1;        for (unsigned int j = 0; j < n; j++)      num_derivatives *= 2;            // Declare pointer to two dimensional array that holds combinations of derivatives and initialise    unsigned int **combinations = new unsigned int *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      combinations[j] = new unsigned int [n];      for (unsigned int k = 0; k < n; k++)        combinations[j][k] = 0;    }            // Generate combinations of derivatives    for (unsigned int row = 1; row < num_derivatives; row++)    {      for (unsigned int num = 0; num < row; num++)      {        for (unsigned int col = n-1; col+1 > 0; col--)        {          if (combinations[row][col] + 1 > 1)            combinations[row][col] = 0;          else          {            combinations[row][col] += 1;            break;          }        }      }    }        // Compute inverse of Jacobian    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};        // Declare transformation matrix    // Declare pointer to two dimensional array and initialise    double **transform = new double *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      transform[j] = new double [num_derivatives];      for (unsigned int k = 0; k < num_derivatives; k++)        transform[j][k] = 1;    }        // Construct transformation matrix    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        for (unsigned int k = 0; k < n; k++)          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];      }    }        // Reset values    for (unsigned int j = 0; j < 1*num_derivatives; j++)      values[j] = 0;        // Map degree of freedom to element degree of freedom    const unsigned int dof = i;        // Generate scalings    const double scalings_y_0 = 1;    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);    const double scalings_y_2 = scalings_y_1*(0.5 - 0.5*y);    const double scalings_y_3 = scalings_y_2*(0.5 - 0.5*y);    const double scalings_y_4 = scalings_y_3*(0.5 - 0.5*y);        // Compute psitilde_a    const double psitilde_a_0 = 1;    const double psitilde_a_1 = x;    const double psitilde_a_2 = 1.5*x*psitilde_a_1 - 0.5*psitilde_a_0;    const double psitilde_a_3 = 1.66666666666667*x*psitilde_a_2 - 0.666666666666667*psitilde_a_1;    const double psitilde_a_4 = 1.75*x*psitilde_a_3 - 0.75*psitilde_a_2;        // Compute psitilde_bs    const double psitilde_bs_0_0 = 1;    const double psitilde_bs_0_1 = 1.5*y + 0.5;    const double psitilde_bs_0_2 = 0.111111111111111*psitilde_bs_0_1 + 1.66666666666667*y*psitilde_bs_0_1 - 0.555555555555556*psitilde_bs_0_0;    const double psitilde_bs_0_3 = 0.05*psitilde_bs_0_2 + 1.75*y*psitilde_bs_0_2 - 0.7*psitilde_bs_0_1;    const double psitilde_bs_0_4 = 0.0285714285714286*psitilde_bs_0_3 + 1.8*y*psitilde_bs_0_3 - 0.771428571428571*psitilde_bs_0_2;    const double psitilde_bs_1_0 = 1;    const double psitilde_bs_1_1 = 2.5*y + 1.5;    const double psitilde_bs_1_2 = 0.54*psitilde_bs_1_1 + 2.1*y*psitilde_bs_1_1 - 0.56*psitilde_bs_1_0;    const double psitilde_bs_1_3 = 0.285714285714286*psitilde_bs_1_2 + 2*y*psitilde_bs_1_2 - 0.714285714285714*psitilde_bs_1_1;    const double psitilde_bs_2_0 = 1;    const double psitilde_bs_2_1 = 3.5*y + 2.5;    const double psitilde_bs_2_2 = 1.02040816326531*psitilde_bs_2_1 + 2.57142857142857*y*psitilde_bs_2_1 - 0.551020408163265*psitilde_bs_2_0;    const double psitilde_bs_3_0 = 1;    const double psitilde_bs_3_1 = 4.5*y + 3.5;    const double psitilde_bs_4_0 = 1;        // Compute basisvalues    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;    const double basisvalue3 = 2.73861278752583*psitilde_a_2*scalings_y_2*psitilde_bs_2_0;    const double basisvalue4 = 2.12132034355964*psitilde_a_1*scalings_y_1*psitilde_bs_1_1;    const double basisvalue5 = 1.22474487139159*psitilde_a_0*scalings_y_0*psitilde_bs_0_2;    const double basisvalue6 = 3.74165738677394*psitilde_a_3*scalings_y_3*psitilde_bs_3_0;    const double basisvalue7 = 3.16227766016838*psitilde_a_2*scalings_y_2*psitilde_bs_2_1;    const double basisvalue8 = 2.44948974278318*psitilde_a_1*scalings_y_1*psitilde_bs_1_2;    const double basisvalue9 = 1.4142135623731*psitilde_a_0*scalings_y_0*psitilde_bs_0_3;    const double basisvalue10 = 4.74341649025257*psitilde_a_4*scalings_y_4*psitilde_bs_4_0;    const double basisvalue11 = 4.18330013267038*psitilde_a_3*scalings_y_3*psitilde_bs_3_1;    const double basisvalue12 = 3.53553390593274*psitilde_a_2*scalings_y_2*psitilde_bs_2_2;    const double basisvalue13 = 2.73861278752583*psitilde_a_1*scalings_y_1*psitilde_bs_1_3;    const double basisvalue14 = 1.58113883008419*psitilde_a_0*scalings_y_0*psitilde_bs_0_4;        // Table(s) of coefficients    const static double coefficients0[15][15] = \    {{0, -0.0412393049421161, -0.0238095238095238, 0.0289800294976279, 0.0224478343233825, 0.012960263189329, -0.0395942580610999, -0.0334632556631574, -0.025920526378658, -0.014965222882255, 0.0321247254366312, 0.0283313448138523, 0.0239443566116079, 0.0185472188784818, 0.0107082418122104},    {0, 0.0412393049421161, -0.0238095238095238, 0.0289800294976278, -0.0224478343233825, 0.012960263189329, 0.0395942580610999, -0.0334632556631574, 0.025920526378658, -0.014965222882255, 0.0321247254366312, -0.0283313448138523, 0.023944356611608, -0.0185472188784818, 0.0107082418122104},    {0, 0, 0.0476190476190476, 0, 0, 0.0388807895679869, 0, 0, 0, 0.0598608915290199, 0, 0, 0, 0, 0.0535412090610519},    {0.125707872210942, 0.131965775814772, -0.0253968253968254, 0.139104141588614, -0.0718330698348239, 0.0311046316543895, 0.0633508128977598, 0.0267706045305259, -0.0622092633087792, 0.0478887132232159, 0, 0.0566626896277046, -0.0838052481406279, 0.0834624849531681, -0.0535412090610519},    {-0.0314269680527355, 0.0109971479845644, 0.00634920634920629, 0, 0.188561808316413, -0.163299316185545, 0, 0.0936971158568409, 0, -0.0419026240703139, 0, 0, 0.0838052481406278, -0.139104141588614, 0.107082418122104},    {0.125707872210942, 0.0439885919382572, 0.126984126984127, 0, 0.0359165349174119, 0.155523158271948, 0, 0, 0.103682105514632, -0.011972178305804, 0, 0, 0, 0.0927360943924091, -0.107082418122104},    {0.125707872210942, -0.131965775814772, -0.0253968253968255, 0.139104141588614, 0.0718330698348238, 0.0311046316543895, -0.0633508128977598, 0.0267706045305259, 0.0622092633087791, 0.047888713223216, 0, -0.0566626896277046, -0.0838052481406278, -0.0834624849531682, -0.0535412090610519},    {-0.0314269680527357, -0.0109971479845642, 0.00634920634920626, 0, -0.188561808316413, -0.163299316185545, 0, 0.0936971158568409, 0, -0.0419026240703139, 0, 0, 0.0838052481406278, 0.139104141588614, 0.107082418122104},    {0.125707872210942, -0.0439885919382573, 0.126984126984127, 0, -0.035916534917412, 0.155523158271948, 0, 0, -0.103682105514632, -0.011972178305804, 0, 0, 0, -0.0927360943924091, -0.107082418122104},    {0.125707872210942, -0.0879771838765143, -0.101587301587302, 0.0927360943924091, 0.107749604752236, 0.0725774738602423, 0.0791885161221998, -0.013385302265263, -0.0518410527573159, -0.0419026240703139, -0.128498901746525, -0.0566626896277046, -0.011972178305804, 0.00927360943924092, 0.0107082418122104},    {-0.0314269680527355, 0, -0.0126984126984127, -0.243432247780074, 0, 0.0544331053951818, 0, 0.0936971158568408, 0, -0.0419026240703139, 0.192748352619787, 0, -0.0239443566116079, 0, 0.0107082418122103},    {0.125707872210942, 0.0879771838765144, -0.101587301587302, 0.0927360943924091, -0.107749604752236, 0.0725774738602423, -0.0791885161221998, -0.013385302265263, 0.0518410527573159, -0.0419026240703139, -0.128498901746525, 0.0566626896277045, -0.011972178305804, -0.0092736094392409, 0.0107082418122104},    {0.251415744421884, -0.351908735506058, -0.203174603174603, -0.139104141588614, -0.107749604752236, -0.0622092633087791, 0.19005243869328, -0.0267706045305259, 0.124418526617558, 0.155638317975452, 0, 0.169988068883114, 0.0838052481406278, -0.0278208283177228, -0.0535412090610519},    {0.251415744421884, 0.351908735506058, -0.203174603174603, -0.139104141588614, 0.107749604752236, -0.0622092633087791, -0.19005243869328, -0.026770604530526, -0.124418526617558, 0.155638317975452, 0, -0.169988068883114, 0.0838052481406279, 0.0278208283177227, -0.0535412090610519},    {0.251415744421884, 0, 0.406349206349206, 0, 0, -0.186627789926337, 0, -0.187394231713682, 0, -0.203527031198668, 0, 0, -0.167610496281256, 0, 0.107082418122104}};        // Interesting (new) part    // Tables of derivatives of the polynomial base (transpose)    const static double dmats0[15][15] = \    {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {4.89897948556635, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {0, 9.48683298050513, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {4, 0, 7.07106781186548, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {5.29150262212917, 0, -2.99332590941916, 13.6626010212795, 0, 0.611010092660777, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {0, 4.38178046004132, 0, 0, 12.5219806739988, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {3.46410161513776, 0, 7.83836717690617, 0, 0, 8.40000000000001, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {0, 10.9544511501033, 0, 0, -3.83325938999965, 0, 17.7482393492988, 0, 0.553283335172492, 0, 0, 0, 0, 0, 0},    {4.73286382647968, 0, 3.3466401061363, 4.36435780471985, 0, -5.07468037933239, 0, 17.0084012854152, 0, 1.52127765851133, 0, 0, 0, 0, 0},    {0, 2.44948974278317, 0, 0, 9.14285714285714, 0, 0, 0, 14.8461497791618, 0, 0, 0, 0, 0, 0},    {3.09838667696594, 0, 7.66811580507233, 0, 0, 10.733126291999, 0, 0, 0, 9.2951600308978, 0, 0, 0, 0, 0},    {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};        const static double dmats1[15][15] = \    {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {2.44948974278317, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {4.24264068711928, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {2.58198889747161, 4.74341649025257, -0.912870929175277, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -