📄 ffc_l2proj_11.h
字号:
switch ( facet ) { case 0: break; case 1: break; case 2: break; } } /// Tabulate the local-to-local mapping of dofs on entity (d, i) virtual void tabulate_entity_dofs(unsigned int* dofs, unsigned int d, unsigned int i) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = x[0][0]; coordinates[0][1] = x[0][1]; coordinates[1][0] = 0.5*x[0][0] + 0.5*x[1][0]; coordinates[1][1] = 0.5*x[0][1] + 0.5*x[1][1]; coordinates[2][0] = x[1][0]; coordinates[2][1] = x[1][1]; coordinates[3][0] = 0.5*x[0][0] + 0.5*x[2][0]; coordinates[3][1] = 0.5*x[0][1] + 0.5*x[2][1]; coordinates[4][0] = 0.5*x[1][0] + 0.5*x[2][0]; coordinates[4][1] = 0.5*x[1][1] + 0.5*x[2][1]; coordinates[5][0] = x[2][0]; coordinates[5][1] = x[2][1]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new UFC_ffc_L2proj_11BilinearForm_dof_map_0(); }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_ffc_L2proj_11BilinearForm_dof_map_1: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor UFC_ffc_L2proj_11BilinearForm_dof_map_1() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~UFC_ffc_L2proj_11BilinearForm_dof_map_1() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Discontinuous Lagrange finite element of degree 2 on a triangle"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return false; break; case 1: return false; break; case 2: return true; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = 6*m.num_entities[2]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 6; } // Return the geometric dimension of the coordinates this dof map provides virtual unsigned int geometric_dimension() const { return 2; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 0; } /// Return the number of dofs associated with each cell entity of dimension d virtual unsigned int num_entity_dofs(unsigned int d) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = 6*c.entity_indices[2][0]; dofs[1] = 6*c.entity_indices[2][0] + 1; dofs[2] = 6*c.entity_indices[2][0] + 2; dofs[3] = 6*c.entity_indices[2][0] + 3; dofs[4] = 6*c.entity_indices[2][0] + 4; dofs[5] = 6*c.entity_indices[2][0] + 5; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: break; case 1: break; case 2: break; } } /// Tabulate the local-to-local mapping of dofs on entity (d, i) virtual void tabulate_entity_dofs(unsigned int* dofs, unsigned int d, unsigned int i) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = x[0][0]; coordinates[0][1] = x[0][1]; coordinates[1][0] = 0.5*x[0][0] + 0.5*x[1][0]; coordinates[1][1] = 0.5*x[0][1] + 0.5*x[1][1]; coordinates[2][0] = x[1][0]; coordinates[2][1] = x[1][1]; coordinates[3][0] = 0.5*x[0][0] + 0.5*x[2][0]; coordinates[3][1] = 0.5*x[0][1] + 0.5*x[2][1]; coordinates[4][0] = 0.5*x[1][0] + 0.5*x[2][0]; coordinates[4][1] = 0.5*x[1][1] + 0.5*x[2][1]; coordinates[5][0] = x[2][0]; coordinates[5][1] = x[2][1]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new UFC_ffc_L2proj_11BilinearForm_dof_map_1(); }};/// This class defines the interface for the tabulation of the cell/// tensor corresponding to the local contribution to a form from/// the integral over a cell.class UFC_ffc_L2proj_11BilinearForm_cell_integral_0: public ufc::cell_integral{public: /// Constructor UFC_ffc_L2proj_11BilinearForm_cell_integral_0() : ufc::cell_integral() { // Do nothing } /// Destructor virtual ~UFC_ffc_L2proj_11BilinearForm_cell_integral_0() { // Do nothing } /// Tabulate the tensor for the contribution from a local cell virtual void tabulate_tensor(double* A, const double * const * w, const ufc::cell& c) const { // Extract vertex coordinates const double * const * x = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = x[1][0] - x[0][0]; const double J_01 = x[2][0] - x[0][0]; const double J_10 = x[1][1] - x[0][1]; const double J_11 = x[2][1] - x[0][1]; // Compute determinant of Jacobian double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian // Set scale factor const double det = std::abs(detJ); // Compute geometry tensors const double G0_ = det; // Compute element tensor A[0] = 0.0166666666666667*G0_; A[1] = 0; A[2] = -0.00277777777777777*G0_; A[3] = 0; A[4] = -0.0111111111111111*G0_; A[5] = -0.00277777777777778*G0_; A[6] = 0; A[7] = 0.0888888888888888*G0_; A[8] = 0; A[9] = 0.0444444444444444*G0_; A[10] = 0.0444444444444444*G0_; A[11] = -0.0111111111111111*G0_; A[12] = -0.00277777777777777*G0_; A[13] = 0; A[14] = 0.0166666666666666*G0_; A[15] = -0.0111111111111111*G0_; A[16] = 0; A[17] = -0.00277777777777777*G0_; A[18] = 0; A[19] = 0.0444444444444444*G0_; A[20] = -0.0111111111111111*G0_; A[21] = 0.0888888888888888*G0_; A[22] = 0.0444444444444444*G0_; A[23] = 0; A[24] = -0.0111111111111111*G0_; A[25] = 0.0444444444444444*G0_; A[26] = 0; A[27] = 0.0444444444444444*G0_; A[28] = 0.0888888888888888*G0_; A[29] = 0; A[30] = -0.00277777777777778*G0_; A[31] = -0.0111111111111111*G0_; A[32] = -0.00277777777777777*G0_; A[33] = 0; A[34] = 0; A[35] = 0.0166666666666666*G0_; }};/// This class defines the interface for the assembly of the global/// tensor corresponding to a form with r + n arguments, that is, a/// mapping////// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R////// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r/// global tensor A is defined by////// A = a(V1, V2, ..., Vr, w1, w2, ..., wn),////// where each argument Vj represents the application to the/// sequence of basis functions of Vj and w1, w2, ..., wn are given/// fixed functions (coefficients).class UFC_ffc_L2proj_11BilinearForm: public ufc::form{public: /// Constructor UFC_ffc_L2proj_11BilinearForm() : ufc::form() { // Do nothing } /// Destructor virtual ~UFC_ffc_L2proj_11BilinearForm() { // Do nothing } /// Return a string identifying the form virtual const char* signature() const { return " | vi1[0, 1, 2, 3, 4, 5]*vi0[0, 1, 2, 3, 4, 5]*dX(0)"; } /// Return the rank of the global tensor (r) virtual unsigned int rank() const { return 2; } /// Return the number of coefficients (n) virtual unsigned int num_coefficients() const { return 0; } /// Return the number of cell integrals virtual unsigned int num_cell_integrals() const { return 1; } /// Return the number of exterior facet integrals virtual unsigned int num_exterior_facet_integrals() const { return 0; } /// Return the number of interior facet integrals virtual unsigned int num_interior_facet_integrals() const { return 0; } /// Create a new finite element for argument function i virtual ufc::finite_element* create_finite_element(unsigned int i) const { switch ( i ) { case 0: return new UFC_ffc_L2proj_11BilinearForm_finite_element_0(); break; case 1: return new UFC_ffc_L2proj_11BilinearForm_finite_element_1(); break; } return 0; } /// Create a new dof map for argument function i virtual ufc::dof_map* create_dof_map(unsigned int i) const { switch ( i ) { case 0: return new UFC_ffc_L2proj_11BilinearForm_dof_map_0(); break; case 1: return new UFC_ffc_L2proj_11BilinearForm_dof_map_1(); break; } return 0; } /// Create a new cell integral on sub domain i virtual ufc::cell_integral* create_cell_integral(unsigned int i) const { return new UFC_ffc_L2proj_11BilinearForm_cell_integral_0(); } /// Create a new exterior facet integral on sub domain i virtual ufc::exterior_facet_integral* create_exterior_facet_integral(unsigned int i) const { return 0; } /// Create a new interior facet integral on sub domain i virtual ufc::interior_facet_integral* create_interior_facet_integral(unsigned int i) const { return 0; }};/// This class defines the interface for a finite element.class UFC_ffc_L2proj_11LinearForm_finite_element_0: public ufc::finite_element{public: /// Constructor UFC_ffc_L2proj_11LinearForm_finite_element_0() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_ffc_L2proj_11LinearForm_finite_element_0() { // Do nothing } /// Return a string identifying the finite element
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -