📄 ffc_l2proj_16.h
字号:
// This code conforms with the UFC specification version 1.0// and was automatically generated by FFC version 0.5.0.//// Warning: This code was generated with the option '-l dolfin'// and contains DOLFIN-specific wrappers that depend on DOLFIN.#ifndef __FFC_L2PROJ_16_H#define __FFC_L2PROJ_16_H#include <cmath>#include <stdexcept>#include <fstream>#include <ufc.h>/// This class defines the interface for a finite element.class UFC_ffc_L2proj_16BilinearForm_finite_element_0_0: public ufc::finite_element{public: /// Constructor UFC_ffc_L2proj_16BilinearForm_finite_element_0_0() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_ffc_L2proj_16BilinearForm_finite_element_0_0() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Lagrange finite element of degree 2 on a triangle"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::triangle; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 6; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 0; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 1; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("// Function evaluate_basis not generated (compiled with -fno-evaluate_basis)"); } /// Evaluate all basis functions at given point in cell virtual void evaluate_basis_all(double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented."); } /// Evaluate order n derivatives of basis function i at given point in cell virtual void evaluate_basis_derivatives(unsigned int i, unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("// Function evaluate_basis_derivatives not generated (compiled with -fno-evaluate_basis_derivatives)"); } /// Evaluate order n derivatives of all basis functions at given point in cell virtual void evaluate_basis_derivatives_all(unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented."); } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { // The reference points, direction and weights: const static double X[6][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}, {{0.5, 0.5}}, {{0, 0.5}}, {{0.5, 0}}}; const static double W[6][1] = {{1}, {1}, {1}, {1}, {1}, {1}}; const static double D[6][1][1] = {{{1}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}}}; const double * const * x = c.coordinates; double result = 0.0; // Iterate over the points: // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0][0] - X[i][0][1]; const double w1 = X[i][0][0]; const double w2 = X[i][0][1]; // Compute affine mapping y = F(X) double y[2]; y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0]; y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1]; // Evaluate function at physical points double values[1]; f.evaluate(values, y, c); // Map function values using appropriate mapping // Affine map: Do nothing // Note that we do not map the weights (yet). // Take directional components for(int k = 0; k < 1; k++) result += values[k]*D[i][0][k]; // Multiply by weights result *= W[i][0]; return result; } /// Evaluate linear functionals for all dofs on the function f virtual void evaluate_dofs(double* values, const ufc::function& f, const ufc::cell& c) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Evaluate at vertices and use affine mapping vertex_values[0] = dof_values[0]; vertex_values[1] = dof_values[1]; vertex_values[2] = dof_values[2]; } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 1; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new UFC_ffc_L2proj_16BilinearForm_finite_element_0_0(); }};/// This class defines the interface for a finite element.class UFC_ffc_L2proj_16BilinearForm_finite_element_0_1: public ufc::finite_element{public: /// Constructor UFC_ffc_L2proj_16BilinearForm_finite_element_0_1() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_ffc_L2proj_16BilinearForm_finite_element_0_1() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Lagrange finite element of degree 2 on a triangle"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::triangle; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 6; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 0; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 1; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("// Function evaluate_basis not generated (compiled with -fno-evaluate_basis)"); } /// Evaluate all basis functions at given point in cell virtual void evaluate_basis_all(double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented."); } /// Evaluate order n derivatives of basis function i at given point in cell virtual void evaluate_basis_derivatives(unsigned int i, unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("// Function evaluate_basis_derivatives not generated (compiled with -fno-evaluate_basis_derivatives)"); } /// Evaluate order n derivatives of all basis functions at given point in cell virtual void evaluate_basis_derivatives_all(unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented."); } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { // The reference points, direction and weights: const static double X[6][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}, {{0.5, 0.5}}, {{0, 0.5}}, {{0.5, 0}}}; const static double W[6][1] = {{1}, {1}, {1}, {1}, {1}, {1}}; const static double D[6][1][1] = {{{1}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}}}; const double * const * x = c.coordinates; double result = 0.0; // Iterate over the points: // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0][0] - X[i][0][1]; const double w1 = X[i][0][0]; const double w2 = X[i][0][1]; // Compute affine mapping y = F(X) double y[2]; y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0]; y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1]; // Evaluate function at physical points double values[1]; f.evaluate(values, y, c); // Map function values using appropriate mapping // Affine map: Do nothing // Note that we do not map the weights (yet). // Take directional components for(int k = 0; k < 1; k++) result += values[k]*D[i][0][k]; // Multiply by weights result *= W[i][0]; return result; } /// Evaluate linear functionals for all dofs on the function f virtual void evaluate_dofs(double* values, const ufc::function& f, const ufc::cell& c) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Evaluate at vertices and use affine mapping vertex_values[0] = dof_values[0]; vertex_values[1] = dof_values[1]; vertex_values[2] = dof_values[2]; } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 1; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new UFC_ffc_L2proj_16BilinearForm_finite_element_0_1(); }};/// This class defines the interface for a finite element.class UFC_ffc_L2proj_16BilinearForm_finite_element_0: public ufc::finite_element{public: /// Constructor UFC_ffc_L2proj_16BilinearForm_finite_element_0() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_ffc_L2proj_16BilinearForm_finite_element_0() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Mixed finite element: [Lagrange finite element of degree 2 on a triangle, Lagrange finite element of degree 2 on a triangle]"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::triangle; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 12; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 1; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 2; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("// Function evaluate_basis not generated (compiled with -fno-evaluate_basis)"); } /// Evaluate all basis functions at given point in cell virtual void evaluate_basis_all(double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented."); } /// Evaluate order n derivatives of basis function i at given point in cell virtual void evaluate_basis_derivatives(unsigned int i, unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("// Function evaluate_basis_derivatives not generated (compiled with -fno-evaluate_basis_derivatives)"); } /// Evaluate order n derivatives of all basis functions at given point in cell virtual void evaluate_basis_derivatives_all(unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented."); } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { // The reference points, direction and weights: const static double X[12][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}, {{0.5, 0.5}}, {{0, 0.5}}, {{0.5, 0}}, {{0, 0}}, {{1, 0}}, {{0, 1}}, {{0.5, 0.5}}, {{0, 0.5}}, {{0.5, 0}}}; const static double W[12][1] = {{1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}}; const static double D[12][1][2] = {{{1, 0}}, {{1, 0}}, {{1, 0}}, {{1, 0}}, {{1, 0}}, {{1, 0}}, {{0, 1}}, {{0, 1}}, {{0, 1}}, {{0, 1}}, {{0, 1}}, {{0, 1}}}; const double * const * x = c.coordinates; double result = 0.0; // Iterate over the points: // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0][0] - X[i][0][1]; const double w1 = X[i][0][0]; const double w2 = X[i][0][1]; // Compute affine mapping y = F(X) double y[2]; y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0]; y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1]; // Evaluate function at physical points double values[2]; f.evaluate(values, y, c); // Map function values using appropriate mapping // Affine map: Do nothing // Note that we do not map the weights (yet).
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -