⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ffc_24.h

📁 利用C
💻 H
字号:
// This code conforms with the UFC specification version 1.0// and was automatically generated by FFC version 0.5.0.#ifndef __FFC_24_H#define __FFC_24_H#include <cmath>#include <stdexcept>#include <ufc.h>/// This class defines the interface for a finite element.class ffc_24_finite_element_0: public ufc::finite_element{public:  /// Constructor  ffc_24_finite_element_0() : ufc::finite_element()  {    // Do nothing  }  /// Destructor  virtual ~ffc_24_finite_element_0()  {    // Do nothing  }  /// Return a string identifying the finite element  virtual const char* signature() const  {    return "Brezzi-Douglas-Marini finite element of degree 1 on a triangle";  }  /// Return the cell shape  virtual ufc::shape cell_shape() const  {    return ufc::triangle;  }  /// Return the dimension of the finite element function space  virtual unsigned int space_dimension() const  {    return 6;  }  /// Return the rank of the value space  virtual unsigned int value_rank() const  {    return 1;  }  /// Return the dimension of the value space for axis i  virtual unsigned int value_dimension(unsigned int i) const  {    return 2;  }  /// Evaluate basis function i at given point in cell  virtual void evaluate_basis(unsigned int i,                              double* values,                              const double* coordinates,                              const ufc::cell& c) const  {    throw std::runtime_error("// Function evaluate_basis not generated (compiled with -fno-evaluate_basis)");  }  /// Evaluate all basis functions at given point in cell  virtual void evaluate_basis_all(double* values,                                  const double* coordinates,                                  const ufc::cell& c) const  {    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");  }  /// Evaluate order n derivatives of basis function i at given point in cell  virtual void evaluate_basis_derivatives(unsigned int i,                                          unsigned int n,                                          double* values,                                          const double* coordinates,                                          const ufc::cell& c) const  {    throw std::runtime_error("// Function evaluate_basis_derivatives not generated (compiled with -fno-evaluate_basis_derivatives)");  }  /// Evaluate order n derivatives of all basis functions at given point in cell  virtual void evaluate_basis_derivatives_all(unsigned int n,                                              double* values,                                              const double* coordinates,                                              const ufc::cell& c) const  {    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");  }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    // The reference points, direction and weights:    const static double X[6][1][2] = {{{0.666666666666667, 0.333333333333333}}, {{0.333333333333333, 0.666666666666667}}, {{0, 0.333333333333333}}, {{0, 0.666666666666667}}, {{0.333333333333333, 0}}, {{0.666666666666667, 0}}};    const static double W[6][1] = {{1}, {1}, {1}, {1}, {1}, {1}};    const static double D[6][1][2] = {{{1, 1}}, {{1, 1}}, {{1, 0}}, {{1, 0}}, {{0, -1}}, {{0, -1}}};        // Extract vertex coordinates    const double * const * x = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = x[1][0] - x[0][0];    const double J_01 = x[2][0] - x[0][0];    const double J_10 = x[1][1] - x[0][1];    const double J_11 = x[2][1] - x[0][1];          // Compute determinant of Jacobian    double detJ = J_00*J_11 - J_01*J_10;          // Compute inverse of Jacobian    const double Jinv_00 =  J_11 / detJ;    const double Jinv_01 = -J_01 / detJ;    const double Jinv_10 = -J_10 / detJ;    const double Jinv_11 =  J_00 / detJ;        double copyofvalues[2];    double result = 0.0;    // Iterate over the points:    // Evaluate basis functions for affine mapping    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];    const double w1 = X[i][0][0];    const double w2 = X[i][0][1];        // Compute affine mapping y = F(X)    double y[2];    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];        // Evaluate function at physical points    double values[2];    f.evaluate(values, y, c);        // Map function values using appropriate mapping    // Copy old values:    copyofvalues[0] = values[0];    copyofvalues[1] = values[1];    // Do the inverse of div piola     values[0] = detJ*(Jinv_00*copyofvalues[0]+Jinv_01*copyofvalues[1]);    values[1] = detJ*(Jinv_10*copyofvalues[0]+Jinv_11*copyofvalues[1]);        // Note that we do not map the weights (yet).        // Take directional components    for(int k = 0; k < 2; k++)      result += values[k]*D[i][0][k];    // Multiply by weights     result *= W[i][0];        return result;  }  /// Evaluate linear functionals for all dofs on the function f  virtual void evaluate_dofs(double* values,                             const ufc::function& f,                             const ufc::cell& c) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * x = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = x[1][0] - x[0][0];    const double J_01 = x[2][0] - x[0][0];    const double J_10 = x[1][1] - x[0][1];    const double J_11 = x[2][1] - x[0][1];          // Compute determinant of Jacobian    double detJ = J_00*J_11 - J_01*J_10;          // Compute inverse of Jacobian    // Evaluate at vertices and use Piola mapping    vertex_values[0] = (1.0/detJ)*(dof_values[2]*2*J_00 + dof_values[3]*J_00 + dof_values[4]*(-2*J_01) + dof_values[5]*J_01);    vertex_values[2] = (1.0/detJ)*(dof_values[0]*2*J_00 + dof_values[1]*J_00 + dof_values[4]*(J_00 + J_01) + dof_values[5]*(2*J_00 - 2*J_01));    vertex_values[4] = (1.0/detJ)*(dof_values[0]*J_01 + dof_values[1]*2*J_01 + dof_values[2]*(J_00 + J_01) + dof_values[3]*(2*J_00 - 2*J_01));    vertex_values[1] = (1.0/detJ)*(dof_values[2]*2*J_10 + dof_values[3]*J_10 + dof_values[4]*(-2*J_11) + dof_values[5]*J_11);    vertex_values[3] = (1.0/detJ)*(dof_values[0]*2*J_10 + dof_values[1]*J_10 + dof_values[4]*(J_10 + J_11) + dof_values[5]*(2*J_10 - 2*J_11));    vertex_values[5] = (1.0/detJ)*(dof_values[0]*J_11 + dof_values[1]*2*J_11 + dof_values[2]*(J_10 + J_11) + dof_values[3]*(2*J_10 - 2*J_11));  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 1;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    return new ffc_24_finite_element_0();  }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class ffc_24_dof_map_0: public ufc::dof_map{private:  unsigned int __global_dimension;public:  /// Constructor  ffc_24_dof_map_0() : ufc::dof_map()  {    __global_dimension = 0;  }  /// Destructor  virtual ~ffc_24_dof_map_0()  {    // Do nothing  }  /// Return a string identifying the dof map  virtual const char* signature() const  {    return "FFC dof map for Brezzi-Douglas-Marini finite element of degree 1 on a triangle";  }  /// Return true iff mesh entities of topological dimension d are needed  virtual bool needs_mesh_entities(unsigned int d) const  {    switch ( d )    {    case 0:      return false;      break;    case 1:      return true;      break;    case 2:      return false;      break;    }    return false;  }  /// Initialize dof map for mesh (return true iff init_cell() is needed)  virtual bool init_mesh(const ufc::mesh& m)  {    __global_dimension = 2*m.num_entities[1];    return false;  }  /// Initialize dof map for given cell  virtual void init_cell(const ufc::mesh& m,                         const ufc::cell& c)  {    // Do nothing  }  /// Finish initialization of dof map for cells  virtual void init_cell_finalize()  {    // Do nothing  }  /// Return the dimension of the global finite element function space  virtual unsigned int global_dimension() const  {    return __global_dimension;  }  /// Return the dimension of the local finite element function space  virtual unsigned int local_dimension() const  {    return 6;  }  // Return the geometric dimension of the coordinates this dof map provides  virtual unsigned int geometric_dimension() const  {    return 2;  }  /// Return the number of dofs on each cell facet  virtual unsigned int num_facet_dofs() const  {    return 2;  }  /// Return the number of dofs associated with each cell entity of dimension d  virtual unsigned int num_entity_dofs(unsigned int d) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Tabulate the local-to-global mapping of dofs on a cell  virtual void tabulate_dofs(unsigned int* dofs,                             const ufc::mesh& m,                             const ufc::cell& c) const  {    dofs[0] = 2*c.entity_indices[1][0];    dofs[1] = 2*c.entity_indices[1][0] + 1;    dofs[2] = 2*c.entity_indices[1][1];    dofs[3] = 2*c.entity_indices[1][1] + 1;    dofs[4] = 2*c.entity_indices[1][2];    dofs[5] = 2*c.entity_indices[1][2] + 1;  }  /// Tabulate the local-to-local mapping from facet dofs to cell dofs  virtual void tabulate_facet_dofs(unsigned int* dofs,                                   unsigned int facet) const  {    switch ( facet )    {    case 0:      dofs[0] = 0;      dofs[1] = 1;      break;    case 1:      dofs[0] = 2;      dofs[1] = 3;      break;    case 2:      dofs[0] = 4;      dofs[1] = 5;      break;    }  }  /// Tabulate the local-to-local mapping of dofs on entity (d, i)  virtual void tabulate_entity_dofs(unsigned int* dofs,                                    unsigned int d, unsigned int i) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Tabulate the coordinates of all dofs on a cell  virtual void tabulate_coordinates(double** coordinates,                                    const ufc::cell& c) const  {    const double * const * x = c.coordinates;    coordinates[0][0] = 0.666666666666667*x[1][0] + 0.333333333333333*x[2][0];    coordinates[0][1] = 0.666666666666667*x[1][1] + 0.333333333333333*x[2][1];    coordinates[1][0] = 0.333333333333333*x[1][0] + 0.666666666666667*x[2][0];    coordinates[1][1] = 0.333333333333333*x[1][1] + 0.666666666666667*x[2][1];    coordinates[2][0] = 0.666666666666667*x[0][0] + 0.333333333333333*x[2][0];    coordinates[2][1] = 0.666666666666667*x[0][1] + 0.333333333333333*x[2][1];    coordinates[3][0] = 0.333333333333333*x[0][0] + 0.666666666666667*x[2][0];    coordinates[3][1] = 0.333333333333333*x[0][1] + 0.666666666666667*x[2][1];    coordinates[4][0] = 0.666666666666667*x[0][0] + 0.333333333333333*x[1][0];    coordinates[4][1] = 0.666666666666667*x[0][1] + 0.333333333333333*x[1][1];    coordinates[5][0] = 0.333333333333333*x[0][0] + 0.666666666666667*x[1][0];    coordinates[5][1] = 0.333333333333333*x[0][1] + 0.666666666666667*x[1][1];  }  /// Return the number of sub dof maps (for a mixed element)  virtual unsigned int num_sub_dof_maps() const  {    return 1;  }  /// Create a new dof_map for sub dof map i (for a mixed element)  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const  {    return new ffc_24_dof_map_0();  }};#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -