📄 ffc_l2proj_24.h
字号:
// This code conforms with the UFC specification version 1.0// and was automatically generated by FFC version 0.5.0.//// Warning: This code was generated with the option '-l dolfin'// and contains DOLFIN-specific wrappers that depend on DOLFIN.#ifndef __FFC_L2PROJ_24_H#define __FFC_L2PROJ_24_H#include <cmath>#include <stdexcept>#include <fstream>#include <ufc.h>/// This class defines the interface for a finite element.class UFC_ffc_L2proj_24BilinearForm_finite_element_0: public ufc::finite_element{public: /// Constructor UFC_ffc_L2proj_24BilinearForm_finite_element_0() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_ffc_L2proj_24BilinearForm_finite_element_0() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Brezzi-Douglas-Marini finite element of degree 1 on a triangle"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::triangle; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 6; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 1; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 2; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("// Function evaluate_basis not generated (compiled with -fno-evaluate_basis)"); } /// Evaluate all basis functions at given point in cell virtual void evaluate_basis_all(double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented."); } /// Evaluate order n derivatives of basis function i at given point in cell virtual void evaluate_basis_derivatives(unsigned int i, unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("// Function evaluate_basis_derivatives not generated (compiled with -fno-evaluate_basis_derivatives)"); } /// Evaluate order n derivatives of all basis functions at given point in cell virtual void evaluate_basis_derivatives_all(unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented."); } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { // The reference points, direction and weights: const static double X[6][1][2] = {{{0.666666666666667, 0.333333333333333}}, {{0.333333333333333, 0.666666666666667}}, {{0, 0.333333333333333}}, {{0, 0.666666666666667}}, {{0.333333333333333, 0}}, {{0.666666666666667, 0}}}; const static double W[6][1] = {{1}, {1}, {1}, {1}, {1}, {1}}; const static double D[6][1][2] = {{{1, 1}}, {{1, 1}}, {{1, 0}}, {{1, 0}}, {{0, -1}}, {{0, -1}}}; // Extract vertex coordinates const double * const * x = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = x[1][0] - x[0][0]; const double J_01 = x[2][0] - x[0][0]; const double J_10 = x[1][1] - x[0][1]; const double J_11 = x[2][1] - x[0][1]; // Compute determinant of Jacobian double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian const double Jinv_00 = J_11 / detJ; const double Jinv_01 = -J_01 / detJ; const double Jinv_10 = -J_10 / detJ; const double Jinv_11 = J_00 / detJ; double copyofvalues[2]; double result = 0.0; // Iterate over the points: // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0][0] - X[i][0][1]; const double w1 = X[i][0][0]; const double w2 = X[i][0][1]; // Compute affine mapping y = F(X) double y[2]; y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0]; y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1]; // Evaluate function at physical points double values[2]; f.evaluate(values, y, c); // Map function values using appropriate mapping // Copy old values: copyofvalues[0] = values[0]; copyofvalues[1] = values[1]; // Do the inverse of div piola values[0] = detJ*(Jinv_00*copyofvalues[0]+Jinv_01*copyofvalues[1]); values[1] = detJ*(Jinv_10*copyofvalues[0]+Jinv_11*copyofvalues[1]); // Note that we do not map the weights (yet). // Take directional components for(int k = 0; k < 2; k++) result += values[k]*D[i][0][k]; // Multiply by weights result *= W[i][0]; return result; } /// Evaluate linear functionals for all dofs on the function f virtual void evaluate_dofs(double* values, const ufc::function& f, const ufc::cell& c) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Extract vertex coordinates const double * const * x = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = x[1][0] - x[0][0]; const double J_01 = x[2][0] - x[0][0]; const double J_10 = x[1][1] - x[0][1]; const double J_11 = x[2][1] - x[0][1]; // Compute determinant of Jacobian double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian // Evaluate at vertices and use Piola mapping vertex_values[0] = (1.0/detJ)*(dof_values[2]*2*J_00 + dof_values[3]*J_00 + dof_values[4]*(-2*J_01) + dof_values[5]*J_01); vertex_values[2] = (1.0/detJ)*(dof_values[0]*2*J_00 + dof_values[1]*J_00 + dof_values[4]*(J_00 + J_01) + dof_values[5]*(2*J_00 - 2*J_01)); vertex_values[4] = (1.0/detJ)*(dof_values[0]*J_01 + dof_values[1]*2*J_01 + dof_values[2]*(J_00 + J_01) + dof_values[3]*(2*J_00 - 2*J_01)); vertex_values[1] = (1.0/detJ)*(dof_values[2]*2*J_10 + dof_values[3]*J_10 + dof_values[4]*(-2*J_11) + dof_values[5]*J_11); vertex_values[3] = (1.0/detJ)*(dof_values[0]*2*J_10 + dof_values[1]*J_10 + dof_values[4]*(J_10 + J_11) + dof_values[5]*(2*J_10 - 2*J_11)); vertex_values[5] = (1.0/detJ)*(dof_values[0]*J_11 + dof_values[1]*2*J_11 + dof_values[2]*(J_10 + J_11) + dof_values[3]*(2*J_10 - 2*J_11)); } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 1; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new UFC_ffc_L2proj_24BilinearForm_finite_element_0(); }};/// This class defines the interface for a finite element.class UFC_ffc_L2proj_24BilinearForm_finite_element_1: public ufc::finite_element{public: /// Constructor UFC_ffc_L2proj_24BilinearForm_finite_element_1() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_ffc_L2proj_24BilinearForm_finite_element_1() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Brezzi-Douglas-Marini finite element of degree 1 on a triangle"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::triangle; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 6; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 1; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 2; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("// Function evaluate_basis not generated (compiled with -fno-evaluate_basis)"); } /// Evaluate all basis functions at given point in cell virtual void evaluate_basis_all(double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented."); } /// Evaluate order n derivatives of basis function i at given point in cell virtual void evaluate_basis_derivatives(unsigned int i, unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("// Function evaluate_basis_derivatives not generated (compiled with -fno-evaluate_basis_derivatives)"); } /// Evaluate order n derivatives of all basis functions at given point in cell virtual void evaluate_basis_derivatives_all(unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented."); } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { // The reference points, direction and weights: const static double X[6][1][2] = {{{0.666666666666667, 0.333333333333333}}, {{0.333333333333333, 0.666666666666667}}, {{0, 0.333333333333333}}, {{0, 0.666666666666667}}, {{0.333333333333333, 0}}, {{0.666666666666667, 0}}}; const static double W[6][1] = {{1}, {1}, {1}, {1}, {1}, {1}}; const static double D[6][1][2] = {{{1, 1}}, {{1, 1}}, {{1, 0}}, {{1, 0}}, {{0, -1}}, {{0, -1}}}; // Extract vertex coordinates const double * const * x = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = x[1][0] - x[0][0]; const double J_01 = x[2][0] - x[0][0]; const double J_10 = x[1][1] - x[0][1]; const double J_11 = x[2][1] - x[0][1]; // Compute determinant of Jacobian double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian const double Jinv_00 = J_11 / detJ; const double Jinv_01 = -J_01 / detJ; const double Jinv_10 = -J_10 / detJ; const double Jinv_11 = J_00 / detJ; double copyofvalues[2]; double result = 0.0; // Iterate over the points: // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0][0] - X[i][0][1]; const double w1 = X[i][0][0]; const double w2 = X[i][0][1]; // Compute affine mapping y = F(X) double y[2]; y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0]; y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1]; // Evaluate function at physical points double values[2]; f.evaluate(values, y, c); // Map function values using appropriate mapping // Copy old values: copyofvalues[0] = values[0]; copyofvalues[1] = values[1]; // Do the inverse of div piola values[0] = detJ*(Jinv_00*copyofvalues[0]+Jinv_01*copyofvalues[1]); values[1] = detJ*(Jinv_10*copyofvalues[0]+Jinv_11*copyofvalues[1]); // Note that we do not map the weights (yet). // Take directional components for(int k = 0; k < 2; k++) result += values[k]*D[i][0][k]; // Multiply by weights result *= W[i][0]; return result; } /// Evaluate linear functionals for all dofs on the function f virtual void evaluate_dofs(double* values, const ufc::function& f, const ufc::cell& c) const
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -