⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ffc_l2proj_01.h

📁 利用C
💻 H
📖 第 1 页 / 共 3 页
字号:
  // Return the geometric dimension of the coordinates this dof map provides  virtual unsigned int geometric_dimension() const  {    return 1;  }  /// Return the number of dofs on each cell facet  virtual unsigned int num_facet_dofs() const  {    return 1;  }  /// Return the number of dofs associated with each cell entity of dimension d  virtual unsigned int num_entity_dofs(unsigned int d) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Tabulate the local-to-global mapping of dofs on a cell  virtual void tabulate_dofs(unsigned int* dofs,                             const ufc::mesh& m,                             const ufc::cell& c) const  {    dofs[0] = c.entity_indices[0][0];    dofs[1] = c.entity_indices[0][1];    unsigned int offset = m.num_entities[0];    dofs[2] = offset + c.entity_indices[1][0];  }  /// Tabulate the local-to-local mapping from facet dofs to cell dofs  virtual void tabulate_facet_dofs(unsigned int* dofs,                                   unsigned int facet) const  {    switch ( facet )    {    case 0:      dofs[0] = 0;      break;    case 1:      dofs[0] = 1;      break;    }  }  /// Tabulate the local-to-local mapping of dofs on entity (d, i)  virtual void tabulate_entity_dofs(unsigned int* dofs,                                    unsigned int d, unsigned int i) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Tabulate the coordinates of all dofs on a cell  virtual void tabulate_coordinates(double** coordinates,                                    const ufc::cell& c) const  {    const double * const * x = c.coordinates;    coordinates[0][0] = x[0][0];    coordinates[1][0] = x[1][0];    coordinates[2][0] = 0.5*x[0][0] + 0.5*x[1][0];  }  /// Return the number of sub dof maps (for a mixed element)  virtual unsigned int num_sub_dof_maps() const  {    return 1;  }  /// Create a new dof_map for sub dof map i (for a mixed element)  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const  {    return new UFC_ffc_L2proj_01BilinearForm_dof_map_1();  }};/// This class defines the interface for the tabulation of the cell/// tensor corresponding to the local contribution to a form from/// the integral over a cell.class UFC_ffc_L2proj_01BilinearForm_cell_integral_0: public ufc::cell_integral{public:  /// Constructor  UFC_ffc_L2proj_01BilinearForm_cell_integral_0() : ufc::cell_integral()  {    // Do nothing  }  /// Destructor  virtual ~UFC_ffc_L2proj_01BilinearForm_cell_integral_0()  {    // Do nothing  }  /// Tabulate the tensor for the contribution from a local cell  virtual void tabulate_tensor(double* A,                               const double * const * w,                               const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * x = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = x[1][0] - x[0][0];          // Compute determinant of Jacobian    double detJ = J_00;          // Compute inverse of Jacobian        // Set scale factor    const double det = std::abs(detJ);        // Compute geometry tensors    const double G0_ = det;        // Compute element tensor    A[0] = 0.133333333333333*G0_;    A[1] = -0.0333333333333333*G0_;    A[2] = 0.0666666666666666*G0_;    A[3] = -0.0333333333333333*G0_;    A[4] = 0.133333333333333*G0_;    A[5] = 0.0666666666666666*G0_;    A[6] = 0.0666666666666666*G0_;    A[7] = 0.0666666666666666*G0_;    A[8] = 0.533333333333333*G0_;  }};/// This class defines the interface for the assembly of the global/// tensor corresponding to a form with r + n arguments, that is, a/// mapping//////     a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R////// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r/// global tensor A is defined by//////     A = a(V1, V2, ..., Vr, w1, w2, ..., wn),////// where each argument Vj represents the application to the/// sequence of basis functions of Vj and w1, w2, ..., wn are given/// fixed functions (coefficients).class UFC_ffc_L2proj_01BilinearForm: public ufc::form{public:  /// Constructor  UFC_ffc_L2proj_01BilinearForm() : ufc::form()  {    // Do nothing  }  /// Destructor  virtual ~UFC_ffc_L2proj_01BilinearForm()  {    // Do nothing  }  /// Return a string identifying the form  virtual const char* signature() const  {    return " | vi1[0, 1, 2]*vi0[0, 1, 2]*dX(0)";  }  /// Return the rank of the global tensor (r)  virtual unsigned int rank() const  {    return 2;  }  /// Return the number of coefficients (n)  virtual unsigned int num_coefficients() const  {    return 0;  }  /// Return the number of cell integrals  virtual unsigned int num_cell_integrals() const  {    return 1;  }    /// Return the number of exterior facet integrals  virtual unsigned int num_exterior_facet_integrals() const  {    return 0;  }    /// Return the number of interior facet integrals  virtual unsigned int num_interior_facet_integrals() const  {    return 0;  }      /// Create a new finite element for argument function i  virtual ufc::finite_element* create_finite_element(unsigned int i) const  {    switch ( i )    {    case 0:      return new UFC_ffc_L2proj_01BilinearForm_finite_element_0();      break;    case 1:      return new UFC_ffc_L2proj_01BilinearForm_finite_element_1();      break;    }    return 0;  }    /// Create a new dof map for argument function i  virtual ufc::dof_map* create_dof_map(unsigned int i) const  {    switch ( i )    {    case 0:      return new UFC_ffc_L2proj_01BilinearForm_dof_map_0();      break;    case 1:      return new UFC_ffc_L2proj_01BilinearForm_dof_map_1();      break;    }    return 0;  }  /// Create a new cell integral on sub domain i  virtual ufc::cell_integral* create_cell_integral(unsigned int i) const  {    return new UFC_ffc_L2proj_01BilinearForm_cell_integral_0();  }  /// Create a new exterior facet integral on sub domain i  virtual ufc::exterior_facet_integral* create_exterior_facet_integral(unsigned int i) const  {    return 0;  }  /// Create a new interior facet integral on sub domain i  virtual ufc::interior_facet_integral* create_interior_facet_integral(unsigned int i) const  {    return 0;  }};/// This class defines the interface for a finite element.class UFC_ffc_L2proj_01LinearForm_finite_element_0: public ufc::finite_element{public:  /// Constructor  UFC_ffc_L2proj_01LinearForm_finite_element_0() : ufc::finite_element()  {    // Do nothing  }  /// Destructor  virtual ~UFC_ffc_L2proj_01LinearForm_finite_element_0()  {    // Do nothing  }  /// Return a string identifying the finite element  virtual const char* signature() const  {    return "Lagrange finite element of degree 2 on a interval";  }  /// Return the cell shape  virtual ufc::shape cell_shape() const  {    return ufc::interval;  }  /// Return the dimension of the finite element function space  virtual unsigned int space_dimension() const  {    return 3;  }  /// Return the rank of the value space  virtual unsigned int value_rank() const  {    return 0;  }  /// Return the dimension of the value space for axis i  virtual unsigned int value_dimension(unsigned int i) const  {    return 1;  }  /// Evaluate basis function i at given point in cell  virtual void evaluate_basis(unsigned int i,                              double* values,                              const double* coordinates,                              const ufc::cell& c) const  {    throw std::runtime_error("// Function evaluate_basis not generated (compiled with -fno-evaluate_basis)");  }  /// Evaluate all basis functions at given point in cell  virtual void evaluate_basis_all(double* values,                                  const double* coordinates,                                  const ufc::cell& c) const  {    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");  }  /// Evaluate order n derivatives of basis function i at given point in cell  virtual void evaluate_basis_derivatives(unsigned int i,                                          unsigned int n,                                          double* values,                                          const double* coordinates,                                          const ufc::cell& c) const  {    throw std::runtime_error("// Function evaluate_basis_derivatives not generated (compiled with -fno-evaluate_basis_derivatives)");  }  /// Evaluate order n derivatives of all basis functions at given point in cell  virtual void evaluate_basis_derivatives_all(unsigned int n,                                              double* values,                                              const double* coordinates,                                              const ufc::cell& c) const  {    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");  }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    // The reference points, direction and weights:    const static double X[3][1][1] = {{{0}}, {{1}}, {{0.5}}};    const static double W[3][1] = {{1}, {1}, {1}};    const static double D[3][1][1] = {{{1}}, {{1}}, {{1}}};        const double * const * x = c.coordinates;    double result = 0.0;    // Iterate over the points:    // Evaluate basis functions for affine mapping    const double w0 = 1.0 - X[i][0][0];    const double w1 = X[i][0][0];        // Compute affine mapping y = F(X)    double y[1];    y[0] = w0*x[0][0] + w1*x[1][0];        // Evaluate function at physical points    double values[1];    f.evaluate(values, y, c);        // Map function values using appropriate mapping    // Affine map: Do nothing        // Note that we do not map the weights (yet).        // Take directional components    for(int k = 0; k < 1; k++)      result += values[k]*D[i][0][k];    // Multiply by weights     result *= W[i][0];        return result;  }  /// Evaluate linear functionals for all dofs on the function f  virtual void evaluate_dofs(double* values,                             const ufc::function& f,                             const ufc::cell& c) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[1] = dof_values[1];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 1;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    return new UFC_ffc_L2proj_01LinearForm_finite_element_0();  }};/// This class defines the interface for a finite element.class UFC_ffc_L2proj_01LinearForm_finite_element_1: public ufc::finite_element{public:  /// Constructor  UFC_ffc_L2proj_01LinearForm_finite_element_1() : ufc::finite_element()  {    // Do nothing  }  /// Destructor  virtual ~UFC_ffc_L2proj_01LinearForm_finite_element_1()  {    // Do nothing  }  /// Return a string identifying the finite element  virtual const char* signature() const  {    return "Lagrange finite element of degree 2 on a interval";  }  /// Return the cell shape  virtual ufc::shape cell_shape() const  {    return ufc::interval;  }  /// Return the dimension of the finite element function space  virtual unsigned int space_dimension() const  {    return 3;  }  /// Return the rank of the value space  virtual unsigned int value_rank() const  {    return 0;  }  /// Return the dimension of the value space for axis i  virtual unsigned int value_dimension(unsigned int i) const  {    return 1;  }  /// Evaluate basis function i at given point in cell  virtual void evaluate_basis(unsigned int i,                              double* values,                              const double* coordinates,                              const ufc::cell& c) const  {    throw std::runtime_error("// Function evaluate_basis not generated (compiled with -fno-evaluate_basis)");  }  /// Evaluate all basis functions at given point in cell  virtual void evaluate_basis_all(double* values,                                  const double* coordinates,                                  const ufc::cell& c) const  {    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");  }  /// Evaluate order n derivatives of basis function i at given point in cell  virtual void evaluate_basis_derivatives(unsigned int i,                                          unsigned int n,                                          double* values,                                          const double* coordinates,                                          const ufc::cell& c) const  {    throw std::runtime_error("// Function evaluate_basis_derivatives not generated (compiled with -fno-evaluate_basis_derivatives)");  }  /// Evaluate order n derivatives of all basis functions at given point in cell  virtual void evaluate_basis_derivatives_all(unsigned int n,                                              double* values,                                              const double* coordinates,                                              const ufc::cell& c) const  {    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");  }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    // The reference points, direction and weights:    const static double X[3][1][1] = {{{0}}, {{1}}, {{0.5}}};    const static double W[3][1] = {{1}, {1}, {1}};    const static double D[3][1][1] = {{{1}}, {{1}}, {{1}}};        const double * const * x = c.coordinates;    double result = 0.0;    // Iterate over the points:    // Evaluate basis functions for affine mapping    const double w0 = 1.0 - X[i][0][0];    const double w1 = X[i][0][0];        // Compute affine mapping y = F(X)    double y[1];    y[0] = w0*x[0][0] + w1*x[1][0];        // Evaluate function at physical points    double values[1];    f.evaluate(values, y, c);        // Map function values using appropriate mapping    // Affine map: Do nothing        // Note that we do not map the weights (yet).        // Take directional components    for(int k = 0; k < 1; k++)      result += values[k]*D[i][0][k];    // Multiply by weights     result *= W[i][0];        return result;  }  /// Evaluate linear functionals for all dofs on the function f  virtual void evaluate_dofs(double* values,                             const ufc::function& f,                             const ufc::cell& c) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[1] = dof_values[1];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 1;  }  /// Create a new finite element for sub element i (for a mixed element)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -