📄 ffc_l2proj_08.h
字号:
virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new UFC_ffc_L2proj_08LinearForm_finite_element_1(); }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_ffc_L2proj_08LinearForm_dof_map_0: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor UFC_ffc_L2proj_08LinearForm_dof_map_0() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~UFC_ffc_L2proj_08LinearForm_dof_map_0() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Discontinuous Lagrange finite element of degree 2 on a interval"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return false; break; case 1: return true; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = 3*m.num_entities[1]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 3; } // Return the geometric dimension of the coordinates this dof map provides virtual unsigned int geometric_dimension() const { return 1; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 0; } /// Return the number of dofs associated with each cell entity of dimension d virtual unsigned int num_entity_dofs(unsigned int d) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = 3*c.entity_indices[1][0]; dofs[1] = 3*c.entity_indices[1][0] + 1; dofs[2] = 3*c.entity_indices[1][0] + 2; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: break; case 1: break; } } /// Tabulate the local-to-local mapping of dofs on entity (d, i) virtual void tabulate_entity_dofs(unsigned int* dofs, unsigned int d, unsigned int i) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = x[0][0]; coordinates[1][0] = 0.5*x[0][0] + 0.5*x[1][0]; coordinates[2][0] = x[1][0]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new UFC_ffc_L2proj_08LinearForm_dof_map_0(); }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_ffc_L2proj_08LinearForm_dof_map_1: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor UFC_ffc_L2proj_08LinearForm_dof_map_1() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~UFC_ffc_L2proj_08LinearForm_dof_map_1() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Discontinuous Lagrange finite element of degree 2 on a interval"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return false; break; case 1: return true; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = 3*m.num_entities[1]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 3; } // Return the geometric dimension of the coordinates this dof map provides virtual unsigned int geometric_dimension() const { return 1; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 0; } /// Return the number of dofs associated with each cell entity of dimension d virtual unsigned int num_entity_dofs(unsigned int d) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = 3*c.entity_indices[1][0]; dofs[1] = 3*c.entity_indices[1][0] + 1; dofs[2] = 3*c.entity_indices[1][0] + 2; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: break; case 1: break; } } /// Tabulate the local-to-local mapping of dofs on entity (d, i) virtual void tabulate_entity_dofs(unsigned int* dofs, unsigned int d, unsigned int i) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = x[0][0]; coordinates[1][0] = 0.5*x[0][0] + 0.5*x[1][0]; coordinates[2][0] = x[1][0]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new UFC_ffc_L2proj_08LinearForm_dof_map_1(); }};/// This class defines the interface for the tabulation of the cell/// tensor corresponding to the local contribution to a form from/// the integral over a cell.class UFC_ffc_L2proj_08LinearForm_cell_integral_0: public ufc::cell_integral{public: /// Constructor UFC_ffc_L2proj_08LinearForm_cell_integral_0() : ufc::cell_integral() { // Do nothing } /// Destructor virtual ~UFC_ffc_L2proj_08LinearForm_cell_integral_0() { // Do nothing } /// Tabulate the tensor for the contribution from a local cell virtual void tabulate_tensor(double* A, const double * const * w, const ufc::cell& c) const { // Extract vertex coordinates const double * const * x = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = x[1][0] - x[0][0]; // Compute determinant of Jacobian double detJ = J_00; // Compute inverse of Jacobian // Set scale factor const double det = std::abs(detJ); // Compute coefficients const double c0_0_0_0 = w[0][0]; const double c0_0_0_1 = w[0][1]; const double c0_0_0_2 = w[0][2]; // Compute geometry tensors const double G0_0 = det*c0_0_0_0; const double G0_1 = det*c0_0_0_1; const double G0_2 = det*c0_0_0_2; // Compute element tensor A[0] = 0.133333333333333*G0_0 + 0.0666666666666666*G0_1 - 0.0333333333333333*G0_2; A[1] = 0.0666666666666666*G0_0 + 0.533333333333333*G0_1 + 0.0666666666666666*G0_2; A[2] = -0.0333333333333333*G0_0 + 0.0666666666666666*G0_1 + 0.133333333333333*G0_2; }};/// This class defines the interface for the assembly of the global/// tensor corresponding to a form with r + n arguments, that is, a/// mapping////// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R////// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r/// global tensor A is defined by////// A = a(V1, V2, ..., Vr, w1, w2, ..., wn),////// where each argument Vj represents the application to the/// sequence of basis functions of Vj and w1, w2, ..., wn are given/// fixed functions (coefficients).class UFC_ffc_L2proj_08LinearForm: public ufc::form{public: /// Constructor UFC_ffc_L2proj_08LinearForm() : ufc::form() { // Do nothing } /// Destructor virtual ~UFC_ffc_L2proj_08LinearForm() { // Do nothing } /// Return a string identifying the form virtual const char* signature() const { return "w0_a0[0, 1, 2] | va0[0, 1, 2]*vi0[0, 1, 2]*dX(0)"; } /// Return the rank of the global tensor (r) virtual unsigned int rank() const { return 1; } /// Return the number of coefficients (n) virtual unsigned int num_coefficients() const { return 1; } /// Return the number of cell integrals virtual unsigned int num_cell_integrals() const { return 1; } /// Return the number of exterior facet integrals virtual unsigned int num_exterior_facet_integrals() const { return 0; } /// Return the number of interior facet integrals virtual unsigned int num_interior_facet_integrals() const { return 0; } /// Create a new finite element for argument function i virtual ufc::finite_element* create_finite_element(unsigned int i) const { switch ( i ) { case 0: return new UFC_ffc_L2proj_08LinearForm_finite_element_0(); break; case 1: return new UFC_ffc_L2proj_08LinearForm_finite_element_1(); break; } return 0; } /// Create a new dof map for argument function i virtual ufc::dof_map* create_dof_map(unsigned int i) const { switch ( i ) { case 0: return new UFC_ffc_L2proj_08LinearForm_dof_map_0(); break; case 1: return new UFC_ffc_L2proj_08LinearForm_dof_map_1(); break; } return 0; } /// Create a new cell integral on sub domain i virtual ufc::cell_integral* create_cell_integral(unsigned int i) const { return new UFC_ffc_L2proj_08LinearForm_cell_integral_0(); } /// Create a new exterior facet integral on sub domain i virtual ufc::exterior_facet_integral* create_exterior_facet_integral(unsigned int i) const { return 0; } /// Create a new interior facet integral on sub domain i virtual ufc::interior_facet_integral* create_interior_facet_integral(unsigned int i) const { return 0; }};// DOLFIN wrappers#include <dolfin/fem/Form.h>class ffc_L2proj_08BilinearForm : public dolfin::Form{public: ffc_L2proj_08BilinearForm() : dolfin::Form() { // Do nothing } /// Return UFC form virtual const ufc::form& form() const { return __form; } /// Return array of coefficients virtual const dolfin::Array<dolfin::Function*>& coefficients() const { return __coefficients; }private: // UFC form UFC_ffc_L2proj_08BilinearForm __form; /// Array of coefficients dolfin::Array<dolfin::Function*> __coefficients;};class ffc_L2proj_08LinearForm : public dolfin::Form{public: ffc_L2proj_08LinearForm(dolfin::Function& w0) : dolfin::Form() { __coefficients.push_back(&w0); } /// Return UFC form virtual const ufc::form& form() const { return __form; } /// Return array of coefficients virtual const dolfin::Array<dolfin::Function*>& coefficients() const { return __coefficients; }private: // UFC form UFC_ffc_L2proj_08LinearForm __form; /// Array of coefficients dolfin::Array<dolfin::Function*> __coefficients;};#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -