📄 ffc_l2proj_05.h
字号:
} // Return the geometric dimension of the coordinates this dof map provides virtual unsigned int geometric_dimension() const { return 3; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 6; } /// Return the number of dofs associated with each cell entity of dimension d virtual unsigned int num_entity_dofs(unsigned int d) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = c.entity_indices[0][0]; dofs[1] = c.entity_indices[0][1]; dofs[2] = c.entity_indices[0][2]; dofs[3] = c.entity_indices[0][3]; unsigned int offset = m.num_entities[0]; dofs[4] = offset + c.entity_indices[1][0]; dofs[5] = offset + c.entity_indices[1][1]; dofs[6] = offset + c.entity_indices[1][2]; dofs[7] = offset + c.entity_indices[1][3]; dofs[8] = offset + c.entity_indices[1][4]; dofs[9] = offset + c.entity_indices[1][5]; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: dofs[0] = 1; dofs[1] = 2; dofs[2] = 3; dofs[3] = 4; dofs[4] = 5; dofs[5] = 6; break; case 1: dofs[0] = 0; dofs[1] = 2; dofs[2] = 3; dofs[3] = 4; dofs[4] = 7; dofs[5] = 8; break; case 2: dofs[0] = 0; dofs[1] = 1; dofs[2] = 3; dofs[3] = 5; dofs[4] = 7; dofs[5] = 9; break; case 3: dofs[0] = 0; dofs[1] = 1; dofs[2] = 2; dofs[3] = 6; dofs[4] = 8; dofs[5] = 9; break; } } /// Tabulate the local-to-local mapping of dofs on entity (d, i) virtual void tabulate_entity_dofs(unsigned int* dofs, unsigned int d, unsigned int i) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = x[0][0]; coordinates[0][1] = x[0][1]; coordinates[0][2] = x[0][2]; coordinates[1][0] = x[1][0]; coordinates[1][1] = x[1][1]; coordinates[1][2] = x[1][2]; coordinates[2][0] = x[2][0]; coordinates[2][1] = x[2][1]; coordinates[2][2] = x[2][2]; coordinates[3][0] = x[3][0]; coordinates[3][1] = x[3][1]; coordinates[3][2] = x[3][2]; coordinates[4][0] = 0.5*x[2][0] + 0.5*x[3][0]; coordinates[4][1] = 0.5*x[2][1] + 0.5*x[3][1]; coordinates[4][2] = 0.5*x[2][2] + 0.5*x[3][2]; coordinates[5][0] = 0.5*x[1][0] + 0.5*x[3][0]; coordinates[5][1] = 0.5*x[1][1] + 0.5*x[3][1]; coordinates[5][2] = 0.5*x[1][2] + 0.5*x[3][2]; coordinates[6][0] = 0.5*x[1][0] + 0.5*x[2][0]; coordinates[6][1] = 0.5*x[1][1] + 0.5*x[2][1]; coordinates[6][2] = 0.5*x[1][2] + 0.5*x[2][2]; coordinates[7][0] = 0.5*x[0][0] + 0.5*x[3][0]; coordinates[7][1] = 0.5*x[0][1] + 0.5*x[3][1]; coordinates[7][2] = 0.5*x[0][2] + 0.5*x[3][2]; coordinates[8][0] = 0.5*x[0][0] + 0.5*x[2][0]; coordinates[8][1] = 0.5*x[0][1] + 0.5*x[2][1]; coordinates[8][2] = 0.5*x[0][2] + 0.5*x[2][2]; coordinates[9][0] = 0.5*x[0][0] + 0.5*x[1][0]; coordinates[9][1] = 0.5*x[0][1] + 0.5*x[1][1]; coordinates[9][2] = 0.5*x[0][2] + 0.5*x[1][2]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new UFC_ffc_L2proj_05LinearForm_dof_map_1(); }};/// This class defines the interface for the tabulation of the cell/// tensor corresponding to the local contribution to a form from/// the integral over a cell.class UFC_ffc_L2proj_05LinearForm_cell_integral_0: public ufc::cell_integral{public: /// Constructor UFC_ffc_L2proj_05LinearForm_cell_integral_0() : ufc::cell_integral() { // Do nothing } /// Destructor virtual ~UFC_ffc_L2proj_05LinearForm_cell_integral_0() { // Do nothing } /// Tabulate the tensor for the contribution from a local cell virtual void tabulate_tensor(double* A, const double * const * w, const ufc::cell& c) const { // Extract vertex coordinates const double * const * x = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = x[1][0] - x[0][0]; const double J_01 = x[2][0] - x[0][0]; const double J_02 = x[3][0] - x[0][0]; const double J_10 = x[1][1] - x[0][1]; const double J_11 = x[2][1] - x[0][1]; const double J_12 = x[3][1] - x[0][1]; const double J_20 = x[1][2] - x[0][2]; const double J_21 = x[2][2] - x[0][2]; const double J_22 = x[3][2] - x[0][2]; // Compute sub determinants const double d_00 = J_11*J_22 - J_12*J_21; const double d_10 = J_02*J_21 - J_01*J_22; const double d_20 = J_01*J_12 - J_02*J_11; // Compute determinant of Jacobian double detJ = J_00*d_00 + J_10*d_10 + J_20*d_20; // Compute inverse of Jacobian // Set scale factor const double det = std::abs(detJ); // Compute coefficients const double c0_0_0_0 = w[0][0]; const double c0_0_0_1 = w[0][1]; const double c0_0_0_2 = w[0][2]; const double c0_0_0_3 = w[0][3]; const double c0_0_0_4 = w[0][4]; const double c0_0_0_5 = w[0][5]; const double c0_0_0_6 = w[0][6]; const double c0_0_0_7 = w[0][7]; const double c0_0_0_8 = w[0][8]; const double c0_0_0_9 = w[0][9]; // Compute geometry tensors const double G0_0 = det*c0_0_0_0; const double G0_1 = det*c0_0_0_1; const double G0_2 = det*c0_0_0_2; const double G0_3 = det*c0_0_0_3; const double G0_4 = det*c0_0_0_4; const double G0_5 = det*c0_0_0_5; const double G0_6 = det*c0_0_0_6; const double G0_7 = det*c0_0_0_7; const double G0_8 = det*c0_0_0_8; const double G0_9 = det*c0_0_0_9; // Compute element tensor A[0] = 0.00238095238095237*G0_0 + 0.000396825396825395*G0_1 + 0.000396825396825396*G0_2 + 0.000396825396825396*G0_3 - 0.00238095238095238*G0_4 - 0.00238095238095238*G0_5 - 0.00238095238095238*G0_6 - 0.00158730158730158*G0_7 - 0.00158730158730158*G0_8 - 0.00158730158730158*G0_9; A[1] = 0.000396825396825395*G0_0 + 0.00238095238095238*G0_1 + 0.000396825396825396*G0_2 + 0.000396825396825396*G0_3 - 0.00238095238095237*G0_4 - 0.00158730158730158*G0_5 - 0.00158730158730158*G0_6 - 0.00238095238095238*G0_7 - 0.00238095238095237*G0_8 - 0.00158730158730158*G0_9; A[2] = 0.000396825396825396*G0_0 + 0.000396825396825396*G0_1 + 0.00238095238095238*G0_2 + 0.000396825396825398*G0_3 - 0.00158730158730159*G0_4 - 0.00238095238095238*G0_5 - 0.00158730158730159*G0_6 - 0.00238095238095238*G0_7 - 0.00158730158730159*G0_8 - 0.00238095238095238*G0_9; A[3] = 0.000396825396825396*G0_0 + 0.000396825396825396*G0_1 + 0.000396825396825398*G0_2 + 0.00238095238095238*G0_3 - 0.00158730158730159*G0_4 - 0.00158730158730159*G0_5 - 0.00238095238095238*G0_6 - 0.00158730158730159*G0_7 - 0.00238095238095238*G0_8 - 0.00238095238095238*G0_9; A[4] = -0.00238095238095237*G0_0 - 0.00238095238095237*G0_1 - 0.00158730158730159*G0_2 - 0.00158730158730159*G0_3 + 0.0126984126984127*G0_4 + 0.00634920634920634*G0_5 + 0.00634920634920635*G0_6 + 0.00634920634920634*G0_7 + 0.00634920634920634*G0_8 + 0.00317460317460317*G0_9; A[5] = -0.00238095238095238*G0_0 - 0.00158730158730158*G0_1 - 0.00238095238095238*G0_2 - 0.00158730158730159*G0_3 + 0.00634920634920634*G0_4 + 0.0126984126984127*G0_5 + 0.00634920634920635*G0_6 + 0.00634920634920634*G0_7 + 0.00317460317460317*G0_8 + 0.00634920634920634*G0_9; A[6] = -0.00238095238095238*G0_0 - 0.00158730158730158*G0_1 - 0.00158730158730159*G0_2 - 0.00238095238095238*G0_3 + 0.00634920634920635*G0_4 + 0.00634920634920635*G0_5 + 0.0126984126984127*G0_6 + 0.00317460317460317*G0_7 + 0.00634920634920634*G0_8 + 0.00634920634920634*G0_9; A[7] = -0.00158730158730158*G0_0 - 0.00238095238095238*G0_1 - 0.00238095238095238*G0_2 - 0.00158730158730159*G0_3 + 0.00634920634920634*G0_4 + 0.00634920634920634*G0_5 + 0.00317460317460317*G0_6 + 0.0126984126984127*G0_7 + 0.00634920634920634*G0_8 + 0.00634920634920634*G0_9; A[8] = -0.00158730158730158*G0_0 - 0.00238095238095237*G0_1 - 0.00158730158730159*G0_2 - 0.00238095238095238*G0_3 + 0.00634920634920634*G0_4 + 0.00317460317460317*G0_5 + 0.00634920634920634*G0_6 + 0.00634920634920634*G0_7 + 0.0126984126984127*G0_8 + 0.00634920634920634*G0_9; A[9] = -0.00158730158730158*G0_0 - 0.00158730158730158*G0_1 - 0.00238095238095238*G0_2 - 0.00238095238095238*G0_3 + 0.00317460317460317*G0_4 + 0.00634920634920634*G0_5 + 0.00634920634920634*G0_6 + 0.00634920634920634*G0_7 + 0.00634920634920634*G0_8 + 0.0126984126984127*G0_9; }};/// This class defines the interface for the assembly of the global/// tensor corresponding to a form with r + n arguments, that is, a/// mapping////// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R////// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r/// global tensor A is defined by////// A = a(V1, V2, ..., Vr, w1, w2, ..., wn),////// where each argument Vj represents the application to the/// sequence of basis functions of Vj and w1, w2, ..., wn are given/// fixed functions (coefficients).class UFC_ffc_L2proj_05LinearForm: public ufc::form{public: /// Constructor UFC_ffc_L2proj_05LinearForm() : ufc::form() { // Do nothing } /// Destructor virtual ~UFC_ffc_L2proj_05LinearForm() { // Do nothing } /// Return a string identifying the form virtual const char* signature() const { return "w0_a0[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] | va0[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]*vi0[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]*dX(0)"; } /// Return the rank of the global tensor (r) virtual unsigned int rank() const { return 1; } /// Return the number of coefficients (n) virtual unsigned int num_coefficients() const { return 1; } /// Return the number of cell integrals virtual unsigned int num_cell_integrals() const { return 1; } /// Return the number of exterior facet integrals virtual unsigned int num_exterior_facet_integrals() const { return 0; } /// Return the number of interior facet integrals virtual unsigned int num_interior_facet_integrals() const { return 0; } /// Create a new finite element for argument function i virtual ufc::finite_element* create_finite_element(unsigned int i) const { switch ( i ) { case 0: return new UFC_ffc_L2proj_05LinearForm_finite_element_0(); break; case 1: return new UFC_ffc_L2proj_05LinearForm_finite_element_1(); break; } return 0; } /// Create a new dof map for argument function i virtual ufc::dof_map* create_dof_map(unsigned int i) const { switch ( i ) { case 0: return new UFC_ffc_L2proj_05LinearForm_dof_map_0(); break; case 1: return new UFC_ffc_L2proj_05LinearForm_dof_map_1(); break; } return 0; } /// Create a new cell integral on sub domain i virtual ufc::cell_integral* create_cell_integral(unsigned int i) const { return new UFC_ffc_L2proj_05LinearForm_cell_integral_0(); } /// Create a new exterior facet integral on sub domain i virtual ufc::exterior_facet_integral* create_exterior_facet_integral(unsigned int i) const { return 0; } /// Create a new interior facet integral on sub domain i virtual ufc::interior_facet_integral* create_interior_facet_integral(unsigned int i) const { return 0; }};// DOLFIN wrappers#include <dolfin/fem/Form.h>class ffc_L2proj_05BilinearForm : public dolfin::Form{public: ffc_L2proj_05BilinearForm() : dolfin::Form() { // Do nothing } /// Return UFC form virtual const ufc::form& form() const { return __form; } /// Return array of coefficients virtual const dolfin::Array<dolfin::Function*>& coefficients() const { return __coefficients; }private: // UFC form UFC_ffc_L2proj_05BilinearForm __form; /// Array of coefficients dolfin::Array<dolfin::Function*> __coefficients;};class ffc_L2proj_05LinearForm : public dolfin::Form{public: ffc_L2proj_05LinearForm(dolfin::Function& w0) : dolfin::Form() { __coefficients.push_back(&w0); } /// Return UFC form virtual const ufc::form& form() const { return __form; } /// Return array of coefficients virtual const dolfin::Array<dolfin::Function*>& coefficients() const { return __coefficients; }private: // UFC form UFC_ffc_L2proj_05LinearForm __form; /// Array of coefficients dolfin::Array<dolfin::Function*> __coefficients;};#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -