⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ffc_l2proj_05.h

📁 利用C
💻 H
📖 第 1 页 / 共 5 页
字号:
  }  // Return the geometric dimension of the coordinates this dof map provides  virtual unsigned int geometric_dimension() const  {    return 3;  }  /// Return the number of dofs on each cell facet  virtual unsigned int num_facet_dofs() const  {    return 6;  }  /// Return the number of dofs associated with each cell entity of dimension d  virtual unsigned int num_entity_dofs(unsigned int d) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Tabulate the local-to-global mapping of dofs on a cell  virtual void tabulate_dofs(unsigned int* dofs,                             const ufc::mesh& m,                             const ufc::cell& c) const  {    dofs[0] = c.entity_indices[0][0];    dofs[1] = c.entity_indices[0][1];    dofs[2] = c.entity_indices[0][2];    dofs[3] = c.entity_indices[0][3];    unsigned int offset = m.num_entities[0];    dofs[4] = offset + c.entity_indices[1][0];    dofs[5] = offset + c.entity_indices[1][1];    dofs[6] = offset + c.entity_indices[1][2];    dofs[7] = offset + c.entity_indices[1][3];    dofs[8] = offset + c.entity_indices[1][4];    dofs[9] = offset + c.entity_indices[1][5];  }  /// Tabulate the local-to-local mapping from facet dofs to cell dofs  virtual void tabulate_facet_dofs(unsigned int* dofs,                                   unsigned int facet) const  {    switch ( facet )    {    case 0:      dofs[0] = 1;      dofs[1] = 2;      dofs[2] = 3;      dofs[3] = 4;      dofs[4] = 5;      dofs[5] = 6;      break;    case 1:      dofs[0] = 0;      dofs[1] = 2;      dofs[2] = 3;      dofs[3] = 4;      dofs[4] = 7;      dofs[5] = 8;      break;    case 2:      dofs[0] = 0;      dofs[1] = 1;      dofs[2] = 3;      dofs[3] = 5;      dofs[4] = 7;      dofs[5] = 9;      break;    case 3:      dofs[0] = 0;      dofs[1] = 1;      dofs[2] = 2;      dofs[3] = 6;      dofs[4] = 8;      dofs[5] = 9;      break;    }  }  /// Tabulate the local-to-local mapping of dofs on entity (d, i)  virtual void tabulate_entity_dofs(unsigned int* dofs,                                    unsigned int d, unsigned int i) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Tabulate the coordinates of all dofs on a cell  virtual void tabulate_coordinates(double** coordinates,                                    const ufc::cell& c) const  {    const double * const * x = c.coordinates;    coordinates[0][0] = x[0][0];    coordinates[0][1] = x[0][1];    coordinates[0][2] = x[0][2];    coordinates[1][0] = x[1][0];    coordinates[1][1] = x[1][1];    coordinates[1][2] = x[1][2];    coordinates[2][0] = x[2][0];    coordinates[2][1] = x[2][1];    coordinates[2][2] = x[2][2];    coordinates[3][0] = x[3][0];    coordinates[3][1] = x[3][1];    coordinates[3][2] = x[3][2];    coordinates[4][0] = 0.5*x[2][0] + 0.5*x[3][0];    coordinates[4][1] = 0.5*x[2][1] + 0.5*x[3][1];    coordinates[4][2] = 0.5*x[2][2] + 0.5*x[3][2];    coordinates[5][0] = 0.5*x[1][0] + 0.5*x[3][0];    coordinates[5][1] = 0.5*x[1][1] + 0.5*x[3][1];    coordinates[5][2] = 0.5*x[1][2] + 0.5*x[3][2];    coordinates[6][0] = 0.5*x[1][0] + 0.5*x[2][0];    coordinates[6][1] = 0.5*x[1][1] + 0.5*x[2][1];    coordinates[6][2] = 0.5*x[1][2] + 0.5*x[2][2];    coordinates[7][0] = 0.5*x[0][0] + 0.5*x[3][0];    coordinates[7][1] = 0.5*x[0][1] + 0.5*x[3][1];    coordinates[7][2] = 0.5*x[0][2] + 0.5*x[3][2];    coordinates[8][0] = 0.5*x[0][0] + 0.5*x[2][0];    coordinates[8][1] = 0.5*x[0][1] + 0.5*x[2][1];    coordinates[8][2] = 0.5*x[0][2] + 0.5*x[2][2];    coordinates[9][0] = 0.5*x[0][0] + 0.5*x[1][0];    coordinates[9][1] = 0.5*x[0][1] + 0.5*x[1][1];    coordinates[9][2] = 0.5*x[0][2] + 0.5*x[1][2];  }  /// Return the number of sub dof maps (for a mixed element)  virtual unsigned int num_sub_dof_maps() const  {    return 1;  }  /// Create a new dof_map for sub dof map i (for a mixed element)  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const  {    return new UFC_ffc_L2proj_05LinearForm_dof_map_1();  }};/// This class defines the interface for the tabulation of the cell/// tensor corresponding to the local contribution to a form from/// the integral over a cell.class UFC_ffc_L2proj_05LinearForm_cell_integral_0: public ufc::cell_integral{public:  /// Constructor  UFC_ffc_L2proj_05LinearForm_cell_integral_0() : ufc::cell_integral()  {    // Do nothing  }  /// Destructor  virtual ~UFC_ffc_L2proj_05LinearForm_cell_integral_0()  {    // Do nothing  }  /// Tabulate the tensor for the contribution from a local cell  virtual void tabulate_tensor(double* A,                               const double * const * w,                               const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * x = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = x[1][0] - x[0][0];    const double J_01 = x[2][0] - x[0][0];    const double J_02 = x[3][0] - x[0][0];    const double J_10 = x[1][1] - x[0][1];    const double J_11 = x[2][1] - x[0][1];    const double J_12 = x[3][1] - x[0][1];    const double J_20 = x[1][2] - x[0][2];    const double J_21 = x[2][2] - x[0][2];    const double J_22 = x[3][2] - x[0][2];          // Compute sub determinants    const double d_00 = J_11*J_22 - J_12*J_21;        const double d_10 = J_02*J_21 - J_01*J_22;        const double d_20 = J_01*J_12 - J_02*J_11;          // Compute determinant of Jacobian    double detJ = J_00*d_00 + J_10*d_10 + J_20*d_20;          // Compute inverse of Jacobian        // Set scale factor    const double det = std::abs(detJ);        // Compute coefficients    const double c0_0_0_0 = w[0][0];    const double c0_0_0_1 = w[0][1];    const double c0_0_0_2 = w[0][2];    const double c0_0_0_3 = w[0][3];    const double c0_0_0_4 = w[0][4];    const double c0_0_0_5 = w[0][5];    const double c0_0_0_6 = w[0][6];    const double c0_0_0_7 = w[0][7];    const double c0_0_0_8 = w[0][8];    const double c0_0_0_9 = w[0][9];        // Compute geometry tensors    const double G0_0 = det*c0_0_0_0;    const double G0_1 = det*c0_0_0_1;    const double G0_2 = det*c0_0_0_2;    const double G0_3 = det*c0_0_0_3;    const double G0_4 = det*c0_0_0_4;    const double G0_5 = det*c0_0_0_5;    const double G0_6 = det*c0_0_0_6;    const double G0_7 = det*c0_0_0_7;    const double G0_8 = det*c0_0_0_8;    const double G0_9 = det*c0_0_0_9;        // Compute element tensor    A[0] = 0.00238095238095237*G0_0 + 0.000396825396825395*G0_1 + 0.000396825396825396*G0_2 + 0.000396825396825396*G0_3 - 0.00238095238095238*G0_4 - 0.00238095238095238*G0_5 - 0.00238095238095238*G0_6 - 0.00158730158730158*G0_7 - 0.00158730158730158*G0_8 - 0.00158730158730158*G0_9;    A[1] = 0.000396825396825395*G0_0 + 0.00238095238095238*G0_1 + 0.000396825396825396*G0_2 + 0.000396825396825396*G0_3 - 0.00238095238095237*G0_4 - 0.00158730158730158*G0_5 - 0.00158730158730158*G0_6 - 0.00238095238095238*G0_7 - 0.00238095238095237*G0_8 - 0.00158730158730158*G0_9;    A[2] = 0.000396825396825396*G0_0 + 0.000396825396825396*G0_1 + 0.00238095238095238*G0_2 + 0.000396825396825398*G0_3 - 0.00158730158730159*G0_4 - 0.00238095238095238*G0_5 - 0.00158730158730159*G0_6 - 0.00238095238095238*G0_7 - 0.00158730158730159*G0_8 - 0.00238095238095238*G0_9;    A[3] = 0.000396825396825396*G0_0 + 0.000396825396825396*G0_1 + 0.000396825396825398*G0_2 + 0.00238095238095238*G0_3 - 0.00158730158730159*G0_4 - 0.00158730158730159*G0_5 - 0.00238095238095238*G0_6 - 0.00158730158730159*G0_7 - 0.00238095238095238*G0_8 - 0.00238095238095238*G0_9;    A[4] = -0.00238095238095237*G0_0 - 0.00238095238095237*G0_1 - 0.00158730158730159*G0_2 - 0.00158730158730159*G0_3 + 0.0126984126984127*G0_4 + 0.00634920634920634*G0_5 + 0.00634920634920635*G0_6 + 0.00634920634920634*G0_7 + 0.00634920634920634*G0_8 + 0.00317460317460317*G0_9;    A[5] = -0.00238095238095238*G0_0 - 0.00158730158730158*G0_1 - 0.00238095238095238*G0_2 - 0.00158730158730159*G0_3 + 0.00634920634920634*G0_4 + 0.0126984126984127*G0_5 + 0.00634920634920635*G0_6 + 0.00634920634920634*G0_7 + 0.00317460317460317*G0_8 + 0.00634920634920634*G0_9;    A[6] = -0.00238095238095238*G0_0 - 0.00158730158730158*G0_1 - 0.00158730158730159*G0_2 - 0.00238095238095238*G0_3 + 0.00634920634920635*G0_4 + 0.00634920634920635*G0_5 + 0.0126984126984127*G0_6 + 0.00317460317460317*G0_7 + 0.00634920634920634*G0_8 + 0.00634920634920634*G0_9;    A[7] = -0.00158730158730158*G0_0 - 0.00238095238095238*G0_1 - 0.00238095238095238*G0_2 - 0.00158730158730159*G0_3 + 0.00634920634920634*G0_4 + 0.00634920634920634*G0_5 + 0.00317460317460317*G0_6 + 0.0126984126984127*G0_7 + 0.00634920634920634*G0_8 + 0.00634920634920634*G0_9;    A[8] = -0.00158730158730158*G0_0 - 0.00238095238095237*G0_1 - 0.00158730158730159*G0_2 - 0.00238095238095238*G0_3 + 0.00634920634920634*G0_4 + 0.00317460317460317*G0_5 + 0.00634920634920634*G0_6 + 0.00634920634920634*G0_7 + 0.0126984126984127*G0_8 + 0.00634920634920634*G0_9;    A[9] = -0.00158730158730158*G0_0 - 0.00158730158730158*G0_1 - 0.00238095238095238*G0_2 - 0.00238095238095238*G0_3 + 0.00317460317460317*G0_4 + 0.00634920634920634*G0_5 + 0.00634920634920634*G0_6 + 0.00634920634920634*G0_7 + 0.00634920634920634*G0_8 + 0.0126984126984127*G0_9;  }};/// This class defines the interface for the assembly of the global/// tensor corresponding to a form with r + n arguments, that is, a/// mapping//////     a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R////// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r/// global tensor A is defined by//////     A = a(V1, V2, ..., Vr, w1, w2, ..., wn),////// where each argument Vj represents the application to the/// sequence of basis functions of Vj and w1, w2, ..., wn are given/// fixed functions (coefficients).class UFC_ffc_L2proj_05LinearForm: public ufc::form{public:  /// Constructor  UFC_ffc_L2proj_05LinearForm() : ufc::form()  {    // Do nothing  }  /// Destructor  virtual ~UFC_ffc_L2proj_05LinearForm()  {    // Do nothing  }  /// Return a string identifying the form  virtual const char* signature() const  {    return "w0_a0[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] | va0[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]*vi0[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]*dX(0)";  }  /// Return the rank of the global tensor (r)  virtual unsigned int rank() const  {    return 1;  }  /// Return the number of coefficients (n)  virtual unsigned int num_coefficients() const  {    return 1;  }  /// Return the number of cell integrals  virtual unsigned int num_cell_integrals() const  {    return 1;  }    /// Return the number of exterior facet integrals  virtual unsigned int num_exterior_facet_integrals() const  {    return 0;  }    /// Return the number of interior facet integrals  virtual unsigned int num_interior_facet_integrals() const  {    return 0;  }      /// Create a new finite element for argument function i  virtual ufc::finite_element* create_finite_element(unsigned int i) const  {    switch ( i )    {    case 0:      return new UFC_ffc_L2proj_05LinearForm_finite_element_0();      break;    case 1:      return new UFC_ffc_L2proj_05LinearForm_finite_element_1();      break;    }    return 0;  }    /// Create a new dof map for argument function i  virtual ufc::dof_map* create_dof_map(unsigned int i) const  {    switch ( i )    {    case 0:      return new UFC_ffc_L2proj_05LinearForm_dof_map_0();      break;    case 1:      return new UFC_ffc_L2proj_05LinearForm_dof_map_1();      break;    }    return 0;  }  /// Create a new cell integral on sub domain i  virtual ufc::cell_integral* create_cell_integral(unsigned int i) const  {    return new UFC_ffc_L2proj_05LinearForm_cell_integral_0();  }  /// Create a new exterior facet integral on sub domain i  virtual ufc::exterior_facet_integral* create_exterior_facet_integral(unsigned int i) const  {    return 0;  }  /// Create a new interior facet integral on sub domain i  virtual ufc::interior_facet_integral* create_interior_facet_integral(unsigned int i) const  {    return 0;  }};// DOLFIN wrappers#include <dolfin/fem/Form.h>class ffc_L2proj_05BilinearForm : public dolfin::Form{public:  ffc_L2proj_05BilinearForm() : dolfin::Form()  {    // Do nothing  }  /// Return UFC form  virtual const ufc::form& form() const  {    return __form;  }    /// Return array of coefficients  virtual const dolfin::Array<dolfin::Function*>& coefficients() const  {    return __coefficients;  }private:  // UFC form  UFC_ffc_L2proj_05BilinearForm __form;  /// Array of coefficients  dolfin::Array<dolfin::Function*> __coefficients;};class ffc_L2proj_05LinearForm : public dolfin::Form{public:  ffc_L2proj_05LinearForm(dolfin::Function& w0) : dolfin::Form()  {    __coefficients.push_back(&w0);  }  /// Return UFC form  virtual const ufc::form& form() const  {    return __form;  }    /// Return array of coefficients  virtual const dolfin::Array<dolfin::Function*>& coefficients() const  {    return __coefficients;  }private:  // UFC form  UFC_ffc_L2proj_05LinearForm __form;  /// Array of coefficients  dolfin::Array<dolfin::Function*> __coefficients;};#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -