⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ffc_l2proj_05.h

📁 利用C
💻 H
📖 第 1 页 / 共 5 页
字号:
    A[6] = -0.00238095238095238*G0_;    A[7] = -0.00158730158730158*G0_;    A[8] = -0.00158730158730158*G0_;    A[9] = -0.00158730158730158*G0_;    A[10] = 0.000396825396825395*G0_;    A[11] = 0.00238095238095238*G0_;    A[12] = 0.000396825396825396*G0_;    A[13] = 0.000396825396825396*G0_;    A[14] = -0.00238095238095237*G0_;    A[15] = -0.00158730158730158*G0_;    A[16] = -0.00158730158730158*G0_;    A[17] = -0.00238095238095238*G0_;    A[18] = -0.00238095238095237*G0_;    A[19] = -0.00158730158730158*G0_;    A[20] = 0.000396825396825396*G0_;    A[21] = 0.000396825396825396*G0_;    A[22] = 0.00238095238095238*G0_;    A[23] = 0.000396825396825398*G0_;    A[24] = -0.00158730158730159*G0_;    A[25] = -0.00238095238095238*G0_;    A[26] = -0.00158730158730159*G0_;    A[27] = -0.00238095238095238*G0_;    A[28] = -0.00158730158730159*G0_;    A[29] = -0.00238095238095238*G0_;    A[30] = 0.000396825396825397*G0_;    A[31] = 0.000396825396825396*G0_;    A[32] = 0.000396825396825398*G0_;    A[33] = 0.00238095238095238*G0_;    A[34] = -0.00158730158730159*G0_;    A[35] = -0.00158730158730159*G0_;    A[36] = -0.00238095238095238*G0_;    A[37] = -0.00158730158730159*G0_;    A[38] = -0.00238095238095238*G0_;    A[39] = -0.00238095238095238*G0_;    A[40] = -0.00238095238095237*G0_;    A[41] = -0.00238095238095237*G0_;    A[42] = -0.00158730158730159*G0_;    A[43] = -0.00158730158730159*G0_;    A[44] = 0.0126984126984127*G0_;    A[45] = 0.00634920634920634*G0_;    A[46] = 0.00634920634920635*G0_;    A[47] = 0.00634920634920634*G0_;    A[48] = 0.00634920634920634*G0_;    A[49] = 0.00317460317460317*G0_;    A[50] = -0.00238095238095238*G0_;    A[51] = -0.00158730158730158*G0_;    A[52] = -0.00238095238095238*G0_;    A[53] = -0.00158730158730159*G0_;    A[54] = 0.00634920634920634*G0_;    A[55] = 0.0126984126984127*G0_;    A[56] = 0.00634920634920635*G0_;    A[57] = 0.00634920634920634*G0_;    A[58] = 0.00317460317460317*G0_;    A[59] = 0.00634920634920634*G0_;    A[60] = -0.00238095238095238*G0_;    A[61] = -0.00158730158730158*G0_;    A[62] = -0.00158730158730159*G0_;    A[63] = -0.00238095238095238*G0_;    A[64] = 0.00634920634920635*G0_;    A[65] = 0.00634920634920635*G0_;    A[66] = 0.0126984126984127*G0_;    A[67] = 0.00317460317460317*G0_;    A[68] = 0.00634920634920634*G0_;    A[69] = 0.00634920634920634*G0_;    A[70] = -0.00158730158730158*G0_;    A[71] = -0.00238095238095238*G0_;    A[72] = -0.00238095238095238*G0_;    A[73] = -0.00158730158730159*G0_;    A[74] = 0.00634920634920634*G0_;    A[75] = 0.00634920634920634*G0_;    A[76] = 0.00317460317460317*G0_;    A[77] = 0.0126984126984127*G0_;    A[78] = 0.00634920634920634*G0_;    A[79] = 0.00634920634920634*G0_;    A[80] = -0.00158730158730158*G0_;    A[81] = -0.00238095238095237*G0_;    A[82] = -0.00158730158730159*G0_;    A[83] = -0.00238095238095238*G0_;    A[84] = 0.00634920634920634*G0_;    A[85] = 0.00317460317460317*G0_;    A[86] = 0.00634920634920634*G0_;    A[87] = 0.00634920634920634*G0_;    A[88] = 0.0126984126984127*G0_;    A[89] = 0.00634920634920634*G0_;    A[90] = -0.00158730158730158*G0_;    A[91] = -0.00158730158730158*G0_;    A[92] = -0.00238095238095238*G0_;    A[93] = -0.00238095238095238*G0_;    A[94] = 0.00317460317460317*G0_;    A[95] = 0.00634920634920634*G0_;    A[96] = 0.00634920634920634*G0_;    A[97] = 0.00634920634920634*G0_;    A[98] = 0.00634920634920634*G0_;    A[99] = 0.0126984126984127*G0_;  }};/// This class defines the interface for the assembly of the global/// tensor corresponding to a form with r + n arguments, that is, a/// mapping//////     a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R////// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r/// global tensor A is defined by//////     A = a(V1, V2, ..., Vr, w1, w2, ..., wn),////// where each argument Vj represents the application to the/// sequence of basis functions of Vj and w1, w2, ..., wn are given/// fixed functions (coefficients).class UFC_ffc_L2proj_05BilinearForm: public ufc::form{public:  /// Constructor  UFC_ffc_L2proj_05BilinearForm() : ufc::form()  {    // Do nothing  }  /// Destructor  virtual ~UFC_ffc_L2proj_05BilinearForm()  {    // Do nothing  }  /// Return a string identifying the form  virtual const char* signature() const  {    return " | vi1[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]*vi0[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]*dX(0)";  }  /// Return the rank of the global tensor (r)  virtual unsigned int rank() const  {    return 2;  }  /// Return the number of coefficients (n)  virtual unsigned int num_coefficients() const  {    return 0;  }  /// Return the number of cell integrals  virtual unsigned int num_cell_integrals() const  {    return 1;  }    /// Return the number of exterior facet integrals  virtual unsigned int num_exterior_facet_integrals() const  {    return 0;  }    /// Return the number of interior facet integrals  virtual unsigned int num_interior_facet_integrals() const  {    return 0;  }      /// Create a new finite element for argument function i  virtual ufc::finite_element* create_finite_element(unsigned int i) const  {    switch ( i )    {    case 0:      return new UFC_ffc_L2proj_05BilinearForm_finite_element_0();      break;    case 1:      return new UFC_ffc_L2proj_05BilinearForm_finite_element_1();      break;    }    return 0;  }    /// Create a new dof map for argument function i  virtual ufc::dof_map* create_dof_map(unsigned int i) const  {    switch ( i )    {    case 0:      return new UFC_ffc_L2proj_05BilinearForm_dof_map_0();      break;    case 1:      return new UFC_ffc_L2proj_05BilinearForm_dof_map_1();      break;    }    return 0;  }  /// Create a new cell integral on sub domain i  virtual ufc::cell_integral* create_cell_integral(unsigned int i) const  {    return new UFC_ffc_L2proj_05BilinearForm_cell_integral_0();  }  /// Create a new exterior facet integral on sub domain i  virtual ufc::exterior_facet_integral* create_exterior_facet_integral(unsigned int i) const  {    return 0;  }  /// Create a new interior facet integral on sub domain i  virtual ufc::interior_facet_integral* create_interior_facet_integral(unsigned int i) const  {    return 0;  }};/// This class defines the interface for a finite element.class UFC_ffc_L2proj_05LinearForm_finite_element_0: public ufc::finite_element{public:  /// Constructor  UFC_ffc_L2proj_05LinearForm_finite_element_0() : ufc::finite_element()  {    // Do nothing  }  /// Destructor  virtual ~UFC_ffc_L2proj_05LinearForm_finite_element_0()  {    // Do nothing  }  /// Return a string identifying the finite element  virtual const char* signature() const  {    return "Lagrange finite element of degree 2 on a tetrahedron";  }  /// Return the cell shape  virtual ufc::shape cell_shape() const  {    return ufc::tetrahedron;  }  /// Return the dimension of the finite element function space  virtual unsigned int space_dimension() const  {    return 10;  }  /// Return the rank of the value space  virtual unsigned int value_rank() const  {    return 0;  }  /// Return the dimension of the value space for axis i  virtual unsigned int value_dimension(unsigned int i) const  {    return 1;  }  /// Evaluate basis function i at given point in cell  virtual void evaluate_basis(unsigned int i,                              double* values,                              const double* coordinates,                              const ufc::cell& c) const  {    throw std::runtime_error("// Function evaluate_basis not generated (compiled with -fno-evaluate_basis)");  }  /// Evaluate all basis functions at given point in cell  virtual void evaluate_basis_all(double* values,                                  const double* coordinates,                                  const ufc::cell& c) const  {    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");  }  /// Evaluate order n derivatives of basis function i at given point in cell  virtual void evaluate_basis_derivatives(unsigned int i,                                          unsigned int n,                                          double* values,                                          const double* coordinates,                                          const ufc::cell& c) const  {    throw std::runtime_error("// Function evaluate_basis_derivatives not generated (compiled with -fno-evaluate_basis_derivatives)");  }  /// Evaluate order n derivatives of all basis functions at given point in cell  virtual void evaluate_basis_derivatives_all(unsigned int n,                                              double* values,                                              const double* coordinates,                                              const ufc::cell& c) const  {    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");  }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    // The reference points, direction and weights:    const static double X[10][1][3] = {{{0, 0, 0}}, {{1, 0, 0}}, {{0, 1, 0}}, {{0, 0, 1}}, {{0, 0.5, 0.5}}, {{0.5, 0, 0.5}}, {{0.5, 0.5, 0}}, {{0, 0, 0.5}}, {{0, 0.5, 0}}, {{0.5, 0, 0}}};    const static double W[10][1] = {{1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}};    const static double D[10][1][1] = {{{1}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}}};        const double * const * x = c.coordinates;    double result = 0.0;    // Iterate over the points:    // Evaluate basis functions for affine mapping    const double w0 = 1.0 - X[i][0][0] - X[i][0][1] - X[i][0][2];    const double w1 = X[i][0][0];    const double w2 = X[i][0][1];    const double w3 = X[i][0][2];        // Compute affine mapping y = F(X)    double y[3];    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0] + w3*x[3][0];    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1] + w3*x[3][1];    y[2] = w0*x[0][2] + w1*x[1][2] + w2*x[2][2] + w3*x[3][2];        // Evaluate function at physical points    double values[1];    f.evaluate(values, y, c);        // Map function values using appropriate mapping    // Affine map: Do nothing        // Note that we do not map the weights (yet).        // Take directional components    for(int k = 0; k < 1; k++)      result += values[k]*D[i][0][k];    // Multiply by weights     result *= W[i][0];        return result;  }  /// Evaluate linear functionals for all dofs on the function f  virtual void evaluate_dofs(double* values,                             const ufc::function& f,                             const ufc::cell& c) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[1] = dof_values[1];    vertex_values[2] = dof_values[2];    vertex_values[3] = dof_values[3];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 1;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    return new UFC_ffc_L2proj_05LinearForm_finite_element_0();  }};/// This class defines the interface for a finite element.class UFC_ffc_L2proj_05LinearForm_finite_element_1: public ufc::finite_element{public:  /// Constructor  UFC_ffc_L2proj_05LinearForm_finite_element_1() : ufc::finite_element()  {    // Do nothing  }  /// Destructor  virtual ~UFC_ffc_L2proj_05LinearForm_finite_element_1()  {    // Do nothing  }  /// Return a string identifying the finite element  virtual const char* signature() const  {    return "Lagrange finite element of degree 2 on a tetrahedron";  }  /// Return the cell shape  virtual ufc::shape cell_shape() const  {    return ufc::tetrahedron;  }  /// Return the dimension of the finite element function space  virtual unsigned int space_dimension() const  {    return 10;  }  /// Return the rank of the value space  virtual unsigned int value_rank() const  {    return 0;  }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -