📄 ffc_l2proj_05.h
字号:
A[6] = -0.00238095238095238*G0_; A[7] = -0.00158730158730158*G0_; A[8] = -0.00158730158730158*G0_; A[9] = -0.00158730158730158*G0_; A[10] = 0.000396825396825395*G0_; A[11] = 0.00238095238095238*G0_; A[12] = 0.000396825396825396*G0_; A[13] = 0.000396825396825396*G0_; A[14] = -0.00238095238095237*G0_; A[15] = -0.00158730158730158*G0_; A[16] = -0.00158730158730158*G0_; A[17] = -0.00238095238095238*G0_; A[18] = -0.00238095238095237*G0_; A[19] = -0.00158730158730158*G0_; A[20] = 0.000396825396825396*G0_; A[21] = 0.000396825396825396*G0_; A[22] = 0.00238095238095238*G0_; A[23] = 0.000396825396825398*G0_; A[24] = -0.00158730158730159*G0_; A[25] = -0.00238095238095238*G0_; A[26] = -0.00158730158730159*G0_; A[27] = -0.00238095238095238*G0_; A[28] = -0.00158730158730159*G0_; A[29] = -0.00238095238095238*G0_; A[30] = 0.000396825396825397*G0_; A[31] = 0.000396825396825396*G0_; A[32] = 0.000396825396825398*G0_; A[33] = 0.00238095238095238*G0_; A[34] = -0.00158730158730159*G0_; A[35] = -0.00158730158730159*G0_; A[36] = -0.00238095238095238*G0_; A[37] = -0.00158730158730159*G0_; A[38] = -0.00238095238095238*G0_; A[39] = -0.00238095238095238*G0_; A[40] = -0.00238095238095237*G0_; A[41] = -0.00238095238095237*G0_; A[42] = -0.00158730158730159*G0_; A[43] = -0.00158730158730159*G0_; A[44] = 0.0126984126984127*G0_; A[45] = 0.00634920634920634*G0_; A[46] = 0.00634920634920635*G0_; A[47] = 0.00634920634920634*G0_; A[48] = 0.00634920634920634*G0_; A[49] = 0.00317460317460317*G0_; A[50] = -0.00238095238095238*G0_; A[51] = -0.00158730158730158*G0_; A[52] = -0.00238095238095238*G0_; A[53] = -0.00158730158730159*G0_; A[54] = 0.00634920634920634*G0_; A[55] = 0.0126984126984127*G0_; A[56] = 0.00634920634920635*G0_; A[57] = 0.00634920634920634*G0_; A[58] = 0.00317460317460317*G0_; A[59] = 0.00634920634920634*G0_; A[60] = -0.00238095238095238*G0_; A[61] = -0.00158730158730158*G0_; A[62] = -0.00158730158730159*G0_; A[63] = -0.00238095238095238*G0_; A[64] = 0.00634920634920635*G0_; A[65] = 0.00634920634920635*G0_; A[66] = 0.0126984126984127*G0_; A[67] = 0.00317460317460317*G0_; A[68] = 0.00634920634920634*G0_; A[69] = 0.00634920634920634*G0_; A[70] = -0.00158730158730158*G0_; A[71] = -0.00238095238095238*G0_; A[72] = -0.00238095238095238*G0_; A[73] = -0.00158730158730159*G0_; A[74] = 0.00634920634920634*G0_; A[75] = 0.00634920634920634*G0_; A[76] = 0.00317460317460317*G0_; A[77] = 0.0126984126984127*G0_; A[78] = 0.00634920634920634*G0_; A[79] = 0.00634920634920634*G0_; A[80] = -0.00158730158730158*G0_; A[81] = -0.00238095238095237*G0_; A[82] = -0.00158730158730159*G0_; A[83] = -0.00238095238095238*G0_; A[84] = 0.00634920634920634*G0_; A[85] = 0.00317460317460317*G0_; A[86] = 0.00634920634920634*G0_; A[87] = 0.00634920634920634*G0_; A[88] = 0.0126984126984127*G0_; A[89] = 0.00634920634920634*G0_; A[90] = -0.00158730158730158*G0_; A[91] = -0.00158730158730158*G0_; A[92] = -0.00238095238095238*G0_; A[93] = -0.00238095238095238*G0_; A[94] = 0.00317460317460317*G0_; A[95] = 0.00634920634920634*G0_; A[96] = 0.00634920634920634*G0_; A[97] = 0.00634920634920634*G0_; A[98] = 0.00634920634920634*G0_; A[99] = 0.0126984126984127*G0_; }};/// This class defines the interface for the assembly of the global/// tensor corresponding to a form with r + n arguments, that is, a/// mapping////// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R////// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r/// global tensor A is defined by////// A = a(V1, V2, ..., Vr, w1, w2, ..., wn),////// where each argument Vj represents the application to the/// sequence of basis functions of Vj and w1, w2, ..., wn are given/// fixed functions (coefficients).class UFC_ffc_L2proj_05BilinearForm: public ufc::form{public: /// Constructor UFC_ffc_L2proj_05BilinearForm() : ufc::form() { // Do nothing } /// Destructor virtual ~UFC_ffc_L2proj_05BilinearForm() { // Do nothing } /// Return a string identifying the form virtual const char* signature() const { return " | vi1[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]*vi0[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]*dX(0)"; } /// Return the rank of the global tensor (r) virtual unsigned int rank() const { return 2; } /// Return the number of coefficients (n) virtual unsigned int num_coefficients() const { return 0; } /// Return the number of cell integrals virtual unsigned int num_cell_integrals() const { return 1; } /// Return the number of exterior facet integrals virtual unsigned int num_exterior_facet_integrals() const { return 0; } /// Return the number of interior facet integrals virtual unsigned int num_interior_facet_integrals() const { return 0; } /// Create a new finite element for argument function i virtual ufc::finite_element* create_finite_element(unsigned int i) const { switch ( i ) { case 0: return new UFC_ffc_L2proj_05BilinearForm_finite_element_0(); break; case 1: return new UFC_ffc_L2proj_05BilinearForm_finite_element_1(); break; } return 0; } /// Create a new dof map for argument function i virtual ufc::dof_map* create_dof_map(unsigned int i) const { switch ( i ) { case 0: return new UFC_ffc_L2proj_05BilinearForm_dof_map_0(); break; case 1: return new UFC_ffc_L2proj_05BilinearForm_dof_map_1(); break; } return 0; } /// Create a new cell integral on sub domain i virtual ufc::cell_integral* create_cell_integral(unsigned int i) const { return new UFC_ffc_L2proj_05BilinearForm_cell_integral_0(); } /// Create a new exterior facet integral on sub domain i virtual ufc::exterior_facet_integral* create_exterior_facet_integral(unsigned int i) const { return 0; } /// Create a new interior facet integral on sub domain i virtual ufc::interior_facet_integral* create_interior_facet_integral(unsigned int i) const { return 0; }};/// This class defines the interface for a finite element.class UFC_ffc_L2proj_05LinearForm_finite_element_0: public ufc::finite_element{public: /// Constructor UFC_ffc_L2proj_05LinearForm_finite_element_0() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_ffc_L2proj_05LinearForm_finite_element_0() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Lagrange finite element of degree 2 on a tetrahedron"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::tetrahedron; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 10; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 0; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 1; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("// Function evaluate_basis not generated (compiled with -fno-evaluate_basis)"); } /// Evaluate all basis functions at given point in cell virtual void evaluate_basis_all(double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented."); } /// Evaluate order n derivatives of basis function i at given point in cell virtual void evaluate_basis_derivatives(unsigned int i, unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("// Function evaluate_basis_derivatives not generated (compiled with -fno-evaluate_basis_derivatives)"); } /// Evaluate order n derivatives of all basis functions at given point in cell virtual void evaluate_basis_derivatives_all(unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented."); } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { // The reference points, direction and weights: const static double X[10][1][3] = {{{0, 0, 0}}, {{1, 0, 0}}, {{0, 1, 0}}, {{0, 0, 1}}, {{0, 0.5, 0.5}}, {{0.5, 0, 0.5}}, {{0.5, 0.5, 0}}, {{0, 0, 0.5}}, {{0, 0.5, 0}}, {{0.5, 0, 0}}}; const static double W[10][1] = {{1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}}; const static double D[10][1][1] = {{{1}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}}}; const double * const * x = c.coordinates; double result = 0.0; // Iterate over the points: // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0][0] - X[i][0][1] - X[i][0][2]; const double w1 = X[i][0][0]; const double w2 = X[i][0][1]; const double w3 = X[i][0][2]; // Compute affine mapping y = F(X) double y[3]; y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0] + w3*x[3][0]; y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1] + w3*x[3][1]; y[2] = w0*x[0][2] + w1*x[1][2] + w2*x[2][2] + w3*x[3][2]; // Evaluate function at physical points double values[1]; f.evaluate(values, y, c); // Map function values using appropriate mapping // Affine map: Do nothing // Note that we do not map the weights (yet). // Take directional components for(int k = 0; k < 1; k++) result += values[k]*D[i][0][k]; // Multiply by weights result *= W[i][0]; return result; } /// Evaluate linear functionals for all dofs on the function f virtual void evaluate_dofs(double* values, const ufc::function& f, const ufc::cell& c) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Evaluate at vertices and use affine mapping vertex_values[0] = dof_values[0]; vertex_values[1] = dof_values[1]; vertex_values[2] = dof_values[2]; vertex_values[3] = dof_values[3]; } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 1; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new UFC_ffc_L2proj_05LinearForm_finite_element_0(); }};/// This class defines the interface for a finite element.class UFC_ffc_L2proj_05LinearForm_finite_element_1: public ufc::finite_element{public: /// Constructor UFC_ffc_L2proj_05LinearForm_finite_element_1() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_ffc_L2proj_05LinearForm_finite_element_1() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Lagrange finite element of degree 2 on a tetrahedron"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::tetrahedron; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 10; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 0; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -