📄 ffc_17.h
字号:
};/// This class defines the interface for a finite element.class ffc_17_finite_element_0: public ufc::finite_element{public: /// Constructor ffc_17_finite_element_0() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~ffc_17_finite_element_0() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Mixed finite element: [Lagrange finite element of degree 1 on a tetrahedron, Lagrange finite element of degree 1 on a tetrahedron, Lagrange finite element of degree 1 on a tetrahedron]"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::tetrahedron; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 12; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 1; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 3; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("// Function evaluate_basis not generated (compiled with -fno-evaluate_basis)"); } /// Evaluate all basis functions at given point in cell virtual void evaluate_basis_all(double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented."); } /// Evaluate order n derivatives of basis function i at given point in cell virtual void evaluate_basis_derivatives(unsigned int i, unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("// Function evaluate_basis_derivatives not generated (compiled with -fno-evaluate_basis_derivatives)"); } /// Evaluate order n derivatives of all basis functions at given point in cell virtual void evaluate_basis_derivatives_all(unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented."); } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { // The reference points, direction and weights: const static double X[12][1][3] = {{{0, 0, 0}}, {{1, 0, 0}}, {{0, 1, 0}}, {{0, 0, 1}}, {{0, 0, 0}}, {{1, 0, 0}}, {{0, 1, 0}}, {{0, 0, 1}}, {{0, 0, 0}}, {{1, 0, 0}}, {{0, 1, 0}}, {{0, 0, 1}}}; const static double W[12][1] = {{1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}}; const static double D[12][1][3] = {{{1, 0, 0}}, {{1, 0, 0}}, {{1, 0, 0}}, {{1, 0, 0}}, {{0, 1, 0}}, {{0, 1, 0}}, {{0, 1, 0}}, {{0, 1, 0}}, {{0, 0, 1}}, {{0, 0, 1}}, {{0, 0, 1}}, {{0, 0, 1}}}; const double * const * x = c.coordinates; double result = 0.0; // Iterate over the points: // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0][0] - X[i][0][1] - X[i][0][2]; const double w1 = X[i][0][0]; const double w2 = X[i][0][1]; const double w3 = X[i][0][2]; // Compute affine mapping y = F(X) double y[3]; y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0] + w3*x[3][0]; y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1] + w3*x[3][1]; y[2] = w0*x[0][2] + w1*x[1][2] + w2*x[2][2] + w3*x[3][2]; // Evaluate function at physical points double values[3]; f.evaluate(values, y, c); // Map function values using appropriate mapping // Affine map: Do nothing // Note that we do not map the weights (yet). // Take directional components for(int k = 0; k < 3; k++) result += values[k]*D[i][0][k]; // Multiply by weights result *= W[i][0]; return result; } /// Evaluate linear functionals for all dofs on the function f virtual void evaluate_dofs(double* values, const ufc::function& f, const ufc::cell& c) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Evaluate at vertices and use affine mapping vertex_values[0] = dof_values[0]; vertex_values[3] = dof_values[1]; vertex_values[6] = dof_values[2]; vertex_values[9] = dof_values[3]; // Evaluate at vertices and use affine mapping vertex_values[1] = dof_values[4]; vertex_values[4] = dof_values[5]; vertex_values[7] = dof_values[6]; vertex_values[10] = dof_values[7]; // Evaluate at vertices and use affine mapping vertex_values[2] = dof_values[8]; vertex_values[5] = dof_values[9]; vertex_values[8] = dof_values[10]; vertex_values[11] = dof_values[11]; } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 3; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { switch ( i ) { case 0: return new ffc_17_finite_element_0_0(); break; case 1: return new ffc_17_finite_element_0_1(); break; case 2: return new ffc_17_finite_element_0_2(); break; } return 0; }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class ffc_17_dof_map_0_0: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor ffc_17_dof_map_0_0() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~ffc_17_dof_map_0_0() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Lagrange finite element of degree 1 on a tetrahedron"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return true; break; case 1: return false; break; case 2: return false; break; case 3: return false; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = m.num_entities[0]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 4; } // Return the geometric dimension of the coordinates this dof map provides virtual unsigned int geometric_dimension() const { return 3; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 3; } /// Return the number of dofs associated with each cell entity of dimension d virtual unsigned int num_entity_dofs(unsigned int d) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = c.entity_indices[0][0]; dofs[1] = c.entity_indices[0][1]; dofs[2] = c.entity_indices[0][2]; dofs[3] = c.entity_indices[0][3]; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: dofs[0] = 1; dofs[1] = 2; dofs[2] = 3; break; case 1: dofs[0] = 0; dofs[1] = 2; dofs[2] = 3; break; case 2: dofs[0] = 0; dofs[1] = 1; dofs[2] = 3; break; case 3: dofs[0] = 0; dofs[1] = 1; dofs[2] = 2; break; } } /// Tabulate the local-to-local mapping of dofs on entity (d, i) virtual void tabulate_entity_dofs(unsigned int* dofs, unsigned int d, unsigned int i) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = x[0][0]; coordinates[0][1] = x[0][1]; coordinates[0][2] = x[0][2]; coordinates[1][0] = x[1][0]; coordinates[1][1] = x[1][1]; coordinates[1][2] = x[1][2]; coordinates[2][0] = x[2][0]; coordinates[2][1] = x[2][1]; coordinates[2][2] = x[2][2]; coordinates[3][0] = x[3][0]; coordinates[3][1] = x[3][1]; coordinates[3][2] = x[3][2]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new ffc_17_dof_map_0_0(); }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class ffc_17_dof_map_0_1: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor ffc_17_dof_map_0_1() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~ffc_17_dof_map_0_1() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Lagrange finite element of degree 1 on a tetrahedron"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return true; break; case 1: return false; break; case 2: return false; break; case 3: return false; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = m.num_entities[0]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 4; } // Return the geometric dimension of the coordinates this dof map provides virtual unsigned int geometric_dimension() const { return 3; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 3; } /// Return the number of dofs associated with each cell entity of dimension d virtual unsigned int num_entity_dofs(unsigned int d) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = c.entity_indices[0][0]; dofs[1] = c.entity_indices[0][1]; dofs[2] = c.entity_indices[0][2]; dofs[3] = c.entity_indices[0][3]; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: dofs[0] = 1; dofs[1] = 2; dofs[2] = 3; break; case 1: dofs[0] = 0;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -