⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 poisson.h

📁 利用C
💻 H
📖 第 1 页 / 共 4 页
字号:
  }  /// Destructor  virtual ~UFC_PoissonBilinearForm_dof_map_1()  {    // Do nothing  }  /// Return a string identifying the dof map  virtual const char* signature() const  {    return "FFC dof map for Lagrange finite element of degree 1 on a tetrahedron";  }  /// Return true iff mesh entities of topological dimension d are needed  virtual bool needs_mesh_entities(unsigned int d) const  {    switch ( d )    {    case 0:      return true;      break;    case 1:      return false;      break;    case 2:      return false;      break;    case 3:      return false;      break;    }    return false;  }  /// Initialize dof map for mesh (return true iff init_cell() is needed)  virtual bool init_mesh(const ufc::mesh& m)  {    __global_dimension = m.num_entities[0];    return false;  }  /// Initialize dof map for given cell  virtual void init_cell(const ufc::mesh& m,                         const ufc::cell& c)  {    // Do nothing  }  /// Finish initialization of dof map for cells  virtual void init_cell_finalize()  {    // Do nothing  }  /// Return the dimension of the global finite element function space  virtual unsigned int global_dimension() const  {    return __global_dimension;  }  /// Return the dimension of the local finite element function space  virtual unsigned int local_dimension() const  {    return 4;  }  // Return the geometric dimension of the coordinates this dof map provides  virtual unsigned int geometric_dimension() const  {    return 3;  }  /// Return the number of dofs on each cell facet  virtual unsigned int num_facet_dofs() const  {    return 3;  }  /// Return the number of dofs associated with each cell entity of dimension d  virtual unsigned int num_entity_dofs(unsigned int d) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Tabulate the local-to-global mapping of dofs on a cell  virtual void tabulate_dofs(unsigned int* dofs,                             const ufc::mesh& m,                             const ufc::cell& c) const  {    dofs[0] = c.entity_indices[0][0];    dofs[1] = c.entity_indices[0][1];    dofs[2] = c.entity_indices[0][2];    dofs[3] = c.entity_indices[0][3];  }  /// Tabulate the local-to-local mapping from facet dofs to cell dofs  virtual void tabulate_facet_dofs(unsigned int* dofs,                                   unsigned int facet) const  {    switch ( facet )    {    case 0:      dofs[0] = 1;      dofs[1] = 2;      dofs[2] = 3;      break;    case 1:      dofs[0] = 0;      dofs[1] = 2;      dofs[2] = 3;      break;    case 2:      dofs[0] = 0;      dofs[1] = 1;      dofs[2] = 3;      break;    case 3:      dofs[0] = 0;      dofs[1] = 1;      dofs[2] = 2;      break;    }  }  /// Tabulate the local-to-local mapping of dofs on entity (d, i)  virtual void tabulate_entity_dofs(unsigned int* dofs,                                    unsigned int d, unsigned int i) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Tabulate the coordinates of all dofs on a cell  virtual void tabulate_coordinates(double** coordinates,                                    const ufc::cell& c) const  {    const double * const * x = c.coordinates;    coordinates[0][0] = x[0][0];    coordinates[0][1] = x[0][1];    coordinates[0][2] = x[0][2];    coordinates[1][0] = x[1][0];    coordinates[1][1] = x[1][1];    coordinates[1][2] = x[1][2];    coordinates[2][0] = x[2][0];    coordinates[2][1] = x[2][1];    coordinates[2][2] = x[2][2];    coordinates[3][0] = x[3][0];    coordinates[3][1] = x[3][1];    coordinates[3][2] = x[3][2];  }  /// Return the number of sub dof maps (for a mixed element)  virtual unsigned int num_sub_dof_maps() const  {    return 1;  }  /// Create a new dof_map for sub dof map i (for a mixed element)  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const  {    return new UFC_PoissonBilinearForm_dof_map_1();  }};/// This class defines the interface for the tabulation of the cell/// tensor corresponding to the local contribution to a form from/// the integral over a cell.class UFC_PoissonBilinearForm_cell_integral_0: public ufc::cell_integral{public:  /// Constructor  UFC_PoissonBilinearForm_cell_integral_0() : ufc::cell_integral()  {    // Do nothing  }  /// Destructor  virtual ~UFC_PoissonBilinearForm_cell_integral_0()  {    // Do nothing  }  /// Tabulate the tensor for the contribution from a local cell  virtual void tabulate_tensor(double* A,                               const double * const * w,                               const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * x = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = x[1][0] - x[0][0];    const double J_01 = x[2][0] - x[0][0];    const double J_02 = x[3][0] - x[0][0];    const double J_10 = x[1][1] - x[0][1];    const double J_11 = x[2][1] - x[0][1];    const double J_12 = x[3][1] - x[0][1];    const double J_20 = x[1][2] - x[0][2];    const double J_21 = x[2][2] - x[0][2];    const double J_22 = x[3][2] - x[0][2];          // Compute sub determinants    const double d_00 = J_11*J_22 - J_12*J_21;    const double d_01 = J_12*J_20 - J_10*J_22;    const double d_02 = J_10*J_21 - J_11*J_20;        const double d_10 = J_02*J_21 - J_01*J_22;    const double d_11 = J_00*J_22 - J_02*J_20;    const double d_12 = J_01*J_20 - J_00*J_21;        const double d_20 = J_01*J_12 - J_02*J_11;    const double d_21 = J_02*J_10 - J_00*J_12;    const double d_22 = J_00*J_11 - J_01*J_10;          // Compute determinant of Jacobian    double detJ = J_00*d_00 + J_10*d_10 + J_20*d_20;          // Compute inverse of Jacobian    const double Jinv_00 = d_00 / detJ;    const double Jinv_01 = d_10 / detJ;    const double Jinv_02 = d_20 / detJ;    const double Jinv_10 = d_01 / detJ;    const double Jinv_11 = d_11 / detJ;    const double Jinv_12 = d_21 / detJ;    const double Jinv_20 = d_02 / detJ;    const double Jinv_21 = d_12 / detJ;    const double Jinv_22 = d_22 / detJ;        // Set scale factor    const double det = std::abs(detJ);        // Compute geometry tensors    const double G0_0_0 = det*(Jinv_00*Jinv_00 + Jinv_01*Jinv_01 + Jinv_02*Jinv_02);    const double G0_0_1 = det*(Jinv_00*Jinv_10 + Jinv_01*Jinv_11 + Jinv_02*Jinv_12);    const double G0_0_2 = det*(Jinv_00*Jinv_20 + Jinv_01*Jinv_21 + Jinv_02*Jinv_22);    const double G0_1_0 = det*(Jinv_10*Jinv_00 + Jinv_11*Jinv_01 + Jinv_12*Jinv_02);    const double G0_1_1 = det*(Jinv_10*Jinv_10 + Jinv_11*Jinv_11 + Jinv_12*Jinv_12);    const double G0_1_2 = det*(Jinv_10*Jinv_20 + Jinv_11*Jinv_21 + Jinv_12*Jinv_22);    const double G0_2_0 = det*(Jinv_20*Jinv_00 + Jinv_21*Jinv_01 + Jinv_22*Jinv_02);    const double G0_2_1 = det*(Jinv_20*Jinv_10 + Jinv_21*Jinv_11 + Jinv_22*Jinv_12);    const double G0_2_2 = det*(Jinv_20*Jinv_20 + Jinv_21*Jinv_21 + Jinv_22*Jinv_22);        // Compute element tensor    A[0] = 0.166666666666666*G0_0_0 + 0.166666666666666*G0_0_1 + 0.166666666666666*G0_0_2 + 0.166666666666666*G0_1_0 + 0.166666666666666*G0_1_1 + 0.166666666666666*G0_1_2 + 0.166666666666666*G0_2_0 + 0.166666666666666*G0_2_1 + 0.166666666666666*G0_2_2;    A[1] = -0.166666666666666*G0_0_0 - 0.166666666666666*G0_1_0 - 0.166666666666666*G0_2_0;    A[2] = -0.166666666666666*G0_0_1 - 0.166666666666666*G0_1_1 - 0.166666666666666*G0_2_1;    A[3] = -0.166666666666666*G0_0_2 - 0.166666666666666*G0_1_2 - 0.166666666666666*G0_2_2;    A[4] = -0.166666666666666*G0_0_0 - 0.166666666666666*G0_0_1 - 0.166666666666666*G0_0_2;    A[5] = 0.166666666666666*G0_0_0;    A[6] = 0.166666666666666*G0_0_1;    A[7] = 0.166666666666666*G0_0_2;    A[8] = -0.166666666666666*G0_1_0 - 0.166666666666666*G0_1_1 - 0.166666666666666*G0_1_2;    A[9] = 0.166666666666666*G0_1_0;    A[10] = 0.166666666666666*G0_1_1;    A[11] = 0.166666666666666*G0_1_2;    A[12] = -0.166666666666666*G0_2_0 - 0.166666666666666*G0_2_1 - 0.166666666666666*G0_2_2;    A[13] = 0.166666666666666*G0_2_0;    A[14] = 0.166666666666666*G0_2_1;    A[15] = 0.166666666666666*G0_2_2;  }};/// This class defines the interface for the assembly of the global/// tensor corresponding to a form with r + n arguments, that is, a/// mapping//////     a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R////// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r/// global tensor A is defined by//////     A = a(V1, V2, ..., Vr, w1, w2, ..., wn),////// where each argument Vj represents the application to the/// sequence of basis functions of Vj and w1, w2, ..., wn are given/// fixed functions (coefficients).class UFC_PoissonBilinearForm: public ufc::form{public:  /// Constructor  UFC_PoissonBilinearForm() : ufc::form()  {    // Do nothing  }  /// Destructor  virtual ~UFC_PoissonBilinearForm()  {    // Do nothing  }  /// Return a string identifying the form  virtual const char* signature() const  {    return "(dXa0[0, 1, 2]/dxb0[0, 1, 2])(dXa1[0, 1, 2]/dxb0[0, 1, 2]) | ((d/dXa0[0, 1, 2])vi0[0, 1, 2, 3])*((d/dXa1[0, 1, 2])vi1[0, 1, 2, 3])*dX(0)";  }  /// Return the rank of the global tensor (r)  virtual unsigned int rank() const  {    return 2;  }  /// Return the number of coefficients (n)  virtual unsigned int num_coefficients() const  {    return 0;  }  /// Return the number of cell integrals  virtual unsigned int num_cell_integrals() const  {    return 1;  }    /// Return the number of exterior facet integrals  virtual unsigned int num_exterior_facet_integrals() const  {    return 0;  }    /// Return the number of interior facet integrals  virtual unsigned int num_interior_facet_integrals() const  {    return 0;  }      /// Create a new finite element for argument function i  virtual ufc::finite_element* create_finite_element(unsigned int i) const  {    switch ( i )    {    case 0:      return new UFC_PoissonBilinearForm_finite_element_0();      break;    case 1:      return new UFC_PoissonBilinearForm_finite_element_1();      break;    }    return 0;  }    /// Create a new dof map for argument function i  virtual ufc::dof_map* create_dof_map(unsigned int i) const  {    switch ( i )    {    case 0:      return new UFC_PoissonBilinearForm_dof_map_0();      break;    case 1:      return new UFC_PoissonBilinearForm_dof_map_1();      break;    }    return 0;  }  /// Create a new cell integral on sub domain i  virtual ufc::cell_integral* create_cell_integral(unsigned int i) const  {    return new UFC_PoissonBilinearForm_cell_integral_0();  }  /// Create a new exterior facet integral on sub domain i  virtual ufc::exterior_facet_integral* create_exterior_facet_integral(unsigned int i) const  {    return 0;  }  /// Create a new interior facet integral on sub domain i  virtual ufc::interior_facet_integral* create_interior_facet_integral(unsigned int i) const  {    return 0;  }};// DOLFIN wrappers#include <dolfin/fem/Form.h>class PoissonBilinearForm : public dolfin::Form{public:  PoissonBilinearForm() : dolfin::Form()  {    // Do nothing  }  /// Return UFC form  virtual const ufc::form& form() const  {    return __form;  }    /// Return array of coefficients  virtual const dolfin::Array<dolfin::Function*>& coefficients() const  {    return __coefficients;  }private:  // UFC form  UFC_PoissonBilinearForm __form;  /// Array of coefficients  dolfin::Array<dolfin::Function*> __coefficients;};#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -