📄 poisson.h
字号:
} /// Destructor virtual ~UFC_PoissonBilinearForm_dof_map_1() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Lagrange finite element of degree 1 on a tetrahedron"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return true; break; case 1: return false; break; case 2: return false; break; case 3: return false; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = m.num_entities[0]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 4; } // Return the geometric dimension of the coordinates this dof map provides virtual unsigned int geometric_dimension() const { return 3; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 3; } /// Return the number of dofs associated with each cell entity of dimension d virtual unsigned int num_entity_dofs(unsigned int d) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = c.entity_indices[0][0]; dofs[1] = c.entity_indices[0][1]; dofs[2] = c.entity_indices[0][2]; dofs[3] = c.entity_indices[0][3]; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: dofs[0] = 1; dofs[1] = 2; dofs[2] = 3; break; case 1: dofs[0] = 0; dofs[1] = 2; dofs[2] = 3; break; case 2: dofs[0] = 0; dofs[1] = 1; dofs[2] = 3; break; case 3: dofs[0] = 0; dofs[1] = 1; dofs[2] = 2; break; } } /// Tabulate the local-to-local mapping of dofs on entity (d, i) virtual void tabulate_entity_dofs(unsigned int* dofs, unsigned int d, unsigned int i) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = x[0][0]; coordinates[0][1] = x[0][1]; coordinates[0][2] = x[0][2]; coordinates[1][0] = x[1][0]; coordinates[1][1] = x[1][1]; coordinates[1][2] = x[1][2]; coordinates[2][0] = x[2][0]; coordinates[2][1] = x[2][1]; coordinates[2][2] = x[2][2]; coordinates[3][0] = x[3][0]; coordinates[3][1] = x[3][1]; coordinates[3][2] = x[3][2]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new UFC_PoissonBilinearForm_dof_map_1(); }};/// This class defines the interface for the tabulation of the cell/// tensor corresponding to the local contribution to a form from/// the integral over a cell.class UFC_PoissonBilinearForm_cell_integral_0: public ufc::cell_integral{public: /// Constructor UFC_PoissonBilinearForm_cell_integral_0() : ufc::cell_integral() { // Do nothing } /// Destructor virtual ~UFC_PoissonBilinearForm_cell_integral_0() { // Do nothing } /// Tabulate the tensor for the contribution from a local cell virtual void tabulate_tensor(double* A, const double * const * w, const ufc::cell& c) const { // Extract vertex coordinates const double * const * x = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = x[1][0] - x[0][0]; const double J_01 = x[2][0] - x[0][0]; const double J_02 = x[3][0] - x[0][0]; const double J_10 = x[1][1] - x[0][1]; const double J_11 = x[2][1] - x[0][1]; const double J_12 = x[3][1] - x[0][1]; const double J_20 = x[1][2] - x[0][2]; const double J_21 = x[2][2] - x[0][2]; const double J_22 = x[3][2] - x[0][2]; // Compute sub determinants const double d_00 = J_11*J_22 - J_12*J_21; const double d_01 = J_12*J_20 - J_10*J_22; const double d_02 = J_10*J_21 - J_11*J_20; const double d_10 = J_02*J_21 - J_01*J_22; const double d_11 = J_00*J_22 - J_02*J_20; const double d_12 = J_01*J_20 - J_00*J_21; const double d_20 = J_01*J_12 - J_02*J_11; const double d_21 = J_02*J_10 - J_00*J_12; const double d_22 = J_00*J_11 - J_01*J_10; // Compute determinant of Jacobian double detJ = J_00*d_00 + J_10*d_10 + J_20*d_20; // Compute inverse of Jacobian const double Jinv_00 = d_00 / detJ; const double Jinv_01 = d_10 / detJ; const double Jinv_02 = d_20 / detJ; const double Jinv_10 = d_01 / detJ; const double Jinv_11 = d_11 / detJ; const double Jinv_12 = d_21 / detJ; const double Jinv_20 = d_02 / detJ; const double Jinv_21 = d_12 / detJ; const double Jinv_22 = d_22 / detJ; // Set scale factor const double det = std::abs(detJ); // Compute geometry tensors const double G0_0_0 = det*(Jinv_00*Jinv_00 + Jinv_01*Jinv_01 + Jinv_02*Jinv_02); const double G0_0_1 = det*(Jinv_00*Jinv_10 + Jinv_01*Jinv_11 + Jinv_02*Jinv_12); const double G0_0_2 = det*(Jinv_00*Jinv_20 + Jinv_01*Jinv_21 + Jinv_02*Jinv_22); const double G0_1_0 = det*(Jinv_10*Jinv_00 + Jinv_11*Jinv_01 + Jinv_12*Jinv_02); const double G0_1_1 = det*(Jinv_10*Jinv_10 + Jinv_11*Jinv_11 + Jinv_12*Jinv_12); const double G0_1_2 = det*(Jinv_10*Jinv_20 + Jinv_11*Jinv_21 + Jinv_12*Jinv_22); const double G0_2_0 = det*(Jinv_20*Jinv_00 + Jinv_21*Jinv_01 + Jinv_22*Jinv_02); const double G0_2_1 = det*(Jinv_20*Jinv_10 + Jinv_21*Jinv_11 + Jinv_22*Jinv_12); const double G0_2_2 = det*(Jinv_20*Jinv_20 + Jinv_21*Jinv_21 + Jinv_22*Jinv_22); // Compute element tensor A[0] = 0.166666666666666*G0_0_0 + 0.166666666666666*G0_0_1 + 0.166666666666666*G0_0_2 + 0.166666666666666*G0_1_0 + 0.166666666666666*G0_1_1 + 0.166666666666666*G0_1_2 + 0.166666666666666*G0_2_0 + 0.166666666666666*G0_2_1 + 0.166666666666666*G0_2_2; A[1] = -0.166666666666666*G0_0_0 - 0.166666666666666*G0_1_0 - 0.166666666666666*G0_2_0; A[2] = -0.166666666666666*G0_0_1 - 0.166666666666666*G0_1_1 - 0.166666666666666*G0_2_1; A[3] = -0.166666666666666*G0_0_2 - 0.166666666666666*G0_1_2 - 0.166666666666666*G0_2_2; A[4] = -0.166666666666666*G0_0_0 - 0.166666666666666*G0_0_1 - 0.166666666666666*G0_0_2; A[5] = 0.166666666666666*G0_0_0; A[6] = 0.166666666666666*G0_0_1; A[7] = 0.166666666666666*G0_0_2; A[8] = -0.166666666666666*G0_1_0 - 0.166666666666666*G0_1_1 - 0.166666666666666*G0_1_2; A[9] = 0.166666666666666*G0_1_0; A[10] = 0.166666666666666*G0_1_1; A[11] = 0.166666666666666*G0_1_2; A[12] = -0.166666666666666*G0_2_0 - 0.166666666666666*G0_2_1 - 0.166666666666666*G0_2_2; A[13] = 0.166666666666666*G0_2_0; A[14] = 0.166666666666666*G0_2_1; A[15] = 0.166666666666666*G0_2_2; }};/// This class defines the interface for the assembly of the global/// tensor corresponding to a form with r + n arguments, that is, a/// mapping////// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R////// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r/// global tensor A is defined by////// A = a(V1, V2, ..., Vr, w1, w2, ..., wn),////// where each argument Vj represents the application to the/// sequence of basis functions of Vj and w1, w2, ..., wn are given/// fixed functions (coefficients).class UFC_PoissonBilinearForm: public ufc::form{public: /// Constructor UFC_PoissonBilinearForm() : ufc::form() { // Do nothing } /// Destructor virtual ~UFC_PoissonBilinearForm() { // Do nothing } /// Return a string identifying the form virtual const char* signature() const { return "(dXa0[0, 1, 2]/dxb0[0, 1, 2])(dXa1[0, 1, 2]/dxb0[0, 1, 2]) | ((d/dXa0[0, 1, 2])vi0[0, 1, 2, 3])*((d/dXa1[0, 1, 2])vi1[0, 1, 2, 3])*dX(0)"; } /// Return the rank of the global tensor (r) virtual unsigned int rank() const { return 2; } /// Return the number of coefficients (n) virtual unsigned int num_coefficients() const { return 0; } /// Return the number of cell integrals virtual unsigned int num_cell_integrals() const { return 1; } /// Return the number of exterior facet integrals virtual unsigned int num_exterior_facet_integrals() const { return 0; } /// Return the number of interior facet integrals virtual unsigned int num_interior_facet_integrals() const { return 0; } /// Create a new finite element for argument function i virtual ufc::finite_element* create_finite_element(unsigned int i) const { switch ( i ) { case 0: return new UFC_PoissonBilinearForm_finite_element_0(); break; case 1: return new UFC_PoissonBilinearForm_finite_element_1(); break; } return 0; } /// Create a new dof map for argument function i virtual ufc::dof_map* create_dof_map(unsigned int i) const { switch ( i ) { case 0: return new UFC_PoissonBilinearForm_dof_map_0(); break; case 1: return new UFC_PoissonBilinearForm_dof_map_1(); break; } return 0; } /// Create a new cell integral on sub domain i virtual ufc::cell_integral* create_cell_integral(unsigned int i) const { return new UFC_PoissonBilinearForm_cell_integral_0(); } /// Create a new exterior facet integral on sub domain i virtual ufc::exterior_facet_integral* create_exterior_facet_integral(unsigned int i) const { return 0; } /// Create a new interior facet integral on sub domain i virtual ufc::interior_facet_integral* create_interior_facet_integral(unsigned int i) const { return 0; }};// DOLFIN wrappers#include <dolfin/fem/Form.h>class PoissonBilinearForm : public dolfin::Form{public: PoissonBilinearForm() : dolfin::Form() { // Do nothing } /// Return UFC form virtual const ufc::form& form() const { return __form; } /// Return array of coefficients virtual const dolfin::Array<dolfin::Function*>& coefficients() const { return __coefficients; }private: // UFC form UFC_PoissonBilinearForm __form; /// Array of coefficients dolfin::Array<dolfin::Function*> __coefficients;};#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -