⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stokes.h

📁 利用C
💻 H
📖 第 1 页 / 共 5 页
字号:
  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[1] = dof_values[1];    vertex_values[2] = dof_values[2];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 1;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    return new UFC_StokesBilinearForm_finite_element_0_0_1();  }};/// This class defines the interface for a finite element.class UFC_StokesBilinearForm_finite_element_0_0: public ufc::finite_element{public:  /// Constructor  UFC_StokesBilinearForm_finite_element_0_0() : ufc::finite_element()  {    // Do nothing  }  /// Destructor  virtual ~UFC_StokesBilinearForm_finite_element_0_0()  {    // Do nothing  }  /// Return a string identifying the finite element  virtual const char* signature() const  {    return "Mixed finite element: [Lagrange finite element of degree 2 on a triangle, Lagrange finite element of degree 2 on a triangle]";  }  /// Return the cell shape  virtual ufc::shape cell_shape() const  {    return ufc::triangle;  }  /// Return the dimension of the finite element function space  virtual unsigned int space_dimension() const  {    return 12;  }  /// Return the rank of the value space  virtual unsigned int value_rank() const  {    return 1;  }  /// Return the dimension of the value space for axis i  virtual unsigned int value_dimension(unsigned int i) const  {    return 2;  }  /// Evaluate basis function i at given point in cell  virtual void evaluate_basis(unsigned int i,                              double* values,                              const double* coordinates,                              const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * element_coordinates = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];          // Compute determinant of Jacobian    const double detJ = J_00*J_11 - J_01*J_10;        // Compute inverse of Jacobian        // Get coordinates and map to the reference (UFC) element    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\                element_coordinates[0][0]*element_coordinates[2][1] +\                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\                element_coordinates[1][0]*element_coordinates[0][1] -\                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;        // Map coordinates to the reference square    if (std::abs(y - 1.0) < 1e-14)      x = -1.0;    else      x = 2.0 *x/(1.0 - y) - 1.0;    y = 2.0*y - 1.0;        // Reset values    values[0] = 0;    values[1] = 0;        if (0 <= i && i <= 5)    {      // Map degree of freedom to element degree of freedom      const unsigned int dof = i;          // Generate scalings      const double scalings_y_0 = 1;      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);      const double scalings_y_2 = scalings_y_1*(0.5 - 0.5*y);          // Compute psitilde_a      const double psitilde_a_0 = 1;      const double psitilde_a_1 = x;      const double psitilde_a_2 = 1.5*x*psitilde_a_1 - 0.5*psitilde_a_0;          // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;      const double psitilde_bs_0_1 = 1.5*y + 0.5;      const double psitilde_bs_0_2 = 0.111111111111111*psitilde_bs_0_1 + 1.66666666666667*y*psitilde_bs_0_1 - 0.555555555555556*psitilde_bs_0_0;      const double psitilde_bs_1_0 = 1;      const double psitilde_bs_1_1 = 2.5*y + 1.5;      const double psitilde_bs_2_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;      const double basisvalue3 = 2.73861278752583*psitilde_a_2*scalings_y_2*psitilde_bs_2_0;      const double basisvalue4 = 2.12132034355964*psitilde_a_1*scalings_y_1*psitilde_bs_1_1;      const double basisvalue5 = 1.22474487139159*psitilde_a_0*scalings_y_0*psitilde_bs_0_2;          // Table(s) of coefficients      const static double coefficients0[6][6] =   \      {{0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817},      {0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818},      {0, 0, 0.2, 0, 0, 0.163299316185545},      {0.471404520791032, 0.23094010767585, 0.133333333333333, 0, 0.188561808316413, -0.163299316185545},      {0.471404520791032, -0.23094010767585, 0.133333333333333, 0, -0.188561808316413, -0.163299316185545},      {0.471404520791032, 0, -0.266666666666667, -0.243432247780074, 0, 0.0544331053951817}};          // Extract relevant coefficients      const double coeff0_0 =   coefficients0[dof][0];      const double coeff0_1 =   coefficients0[dof][1];      const double coeff0_2 =   coefficients0[dof][2];      const double coeff0_3 =   coefficients0[dof][3];      const double coeff0_4 =   coefficients0[dof][4];      const double coeff0_5 =   coefficients0[dof][5];          // Compute value(s)      values[0] = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2 + coeff0_3*basisvalue3 + coeff0_4*basisvalue4 + coeff0_5*basisvalue5;    }        if (6 <= i && i <= 11)    {      // Map degree of freedom to element degree of freedom      const unsigned int dof = i - 6;          // Generate scalings      const double scalings_y_0 = 1;      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);      const double scalings_y_2 = scalings_y_1*(0.5 - 0.5*y);          // Compute psitilde_a      const double psitilde_a_0 = 1;      const double psitilde_a_1 = x;      const double psitilde_a_2 = 1.5*x*psitilde_a_1 - 0.5*psitilde_a_0;          // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;      const double psitilde_bs_0_1 = 1.5*y + 0.5;      const double psitilde_bs_0_2 = 0.111111111111111*psitilde_bs_0_1 + 1.66666666666667*y*psitilde_bs_0_1 - 0.555555555555556*psitilde_bs_0_0;      const double psitilde_bs_1_0 = 1;      const double psitilde_bs_1_1 = 2.5*y + 1.5;      const double psitilde_bs_2_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;      const double basisvalue3 = 2.73861278752583*psitilde_a_2*scalings_y_2*psitilde_bs_2_0;      const double basisvalue4 = 2.12132034355964*psitilde_a_1*scalings_y_1*psitilde_bs_1_1;      const double basisvalue5 = 1.22474487139159*psitilde_a_0*scalings_y_0*psitilde_bs_0_2;          // Table(s) of coefficients      const static double coefficients0[6][6] =   \      {{0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817},      {0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818},      {0, 0, 0.2, 0, 0, 0.163299316185545},      {0.471404520791032, 0.23094010767585, 0.133333333333333, 0, 0.188561808316413, -0.163299316185545},      {0.471404520791032, -0.23094010767585, 0.133333333333333, 0, -0.188561808316413, -0.163299316185545},      {0.471404520791032, 0, -0.266666666666667, -0.243432247780074, 0, 0.0544331053951817}};          // Extract relevant coefficients      const double coeff0_0 =   coefficients0[dof][0];      const double coeff0_1 =   coefficients0[dof][1];      const double coeff0_2 =   coefficients0[dof][2];      const double coeff0_3 =   coefficients0[dof][3];      const double coeff0_4 =   coefficients0[dof][4];      const double coeff0_5 =   coefficients0[dof][5];          // Compute value(s)      values[1] = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2 + coeff0_3*basisvalue3 + coeff0_4*basisvalue4 + coeff0_5*basisvalue5;    }      }  /// Evaluate all basis functions at given point in cell  virtual void evaluate_basis_all(double* values,                                  const double* coordinates,                                  const ufc::cell& c) const  {    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");  }  /// Evaluate order n derivatives of basis function i at given point in cell  virtual void evaluate_basis_derivatives(unsigned int i,                                          unsigned int n,                                          double* values,                                          const double* coordinates,                                          const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * element_coordinates = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];          // Compute determinant of Jacobian    const double detJ = J_00*J_11 - J_01*J_10;        // Compute inverse of Jacobian        // Get coordinates and map to the reference (UFC) element    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\                element_coordinates[0][0]*element_coordinates[2][1] +\                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\                element_coordinates[1][0]*element_coordinates[0][1] -\                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;        // Map coordinates to the reference square    if (std::abs(y - 1.0) < 1e-14)      x = -1.0;    else      x = 2.0 *x/(1.0 - y) - 1.0;    y = 2.0*y - 1.0;        // Compute number of derivatives    unsigned int num_derivatives = 1;        for (unsigned int j = 0; j < n; j++)      num_derivatives *= 2;            // Declare pointer to two dimensional array that holds combinations of derivatives and initialise    unsigned int **combinations = new unsigned int *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      combinations[j] = new unsigned int [n];      for (unsigned int k = 0; k < n; k++)        combinations[j][k] = 0;    }            // Generate combinations of derivatives    for (unsigned int row = 1; row < num_derivatives; row++)    {      for (unsigned int num = 0; num < row; num++)      {        for (unsigned int col = n-1; col+1 > 0; col--)        {          if (combinations[row][col] + 1 > 1)            combinations[row][col] = 0;          else          {            combinations[row][col] += 1;            break;          }        }      }    }        // Compute inverse of Jacobian    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};        // Declare transformation matrix    // Declare pointer to two dimensional array and initialise    double **transform = new double *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      transform[j] = new double [num_derivatives];      for (unsigned int k = 0; k < num_derivatives; k++)        transform[j][k] = 1;    }        // Construct transformation matrix    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -