⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 poissonp2.h

📁 利用C
💻 H
📖 第 1 页 / 共 5 页
字号:
      }    }        // Reset values    for (unsigned int j = 0; j < 1*num_derivatives; j++)      values[j] = 0;        // Map degree of freedom to element degree of freedom    const unsigned int dof = i;        // Generate scalings    const double scalings_y_0 = 1;    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);    const double scalings_y_2 = scalings_y_1*(0.5 - 0.5*y);        // Compute psitilde_a    const double psitilde_a_0 = 1;    const double psitilde_a_1 = x;    const double psitilde_a_2 = 1.5*x*psitilde_a_1 - 0.5*psitilde_a_0;        // Compute psitilde_bs    const double psitilde_bs_0_0 = 1;    const double psitilde_bs_0_1 = 1.5*y + 0.5;    const double psitilde_bs_0_2 = 0.111111111111111*psitilde_bs_0_1 + 1.66666666666667*y*psitilde_bs_0_1 - 0.555555555555556*psitilde_bs_0_0;    const double psitilde_bs_1_0 = 1;    const double psitilde_bs_1_1 = 2.5*y + 1.5;    const double psitilde_bs_2_0 = 1;        // Compute basisvalues    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;    const double basisvalue3 = 2.73861278752583*psitilde_a_2*scalings_y_2*psitilde_bs_2_0;    const double basisvalue4 = 2.12132034355964*psitilde_a_1*scalings_y_1*psitilde_bs_1_1;    const double basisvalue5 = 1.22474487139159*psitilde_a_0*scalings_y_0*psitilde_bs_0_2;        // Table(s) of coefficients    const static double coefficients0[6][6] = \    {{0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817},    {0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818},    {0, 0, 0.2, 0, 0, 0.163299316185545},    {0.471404520791032, 0.23094010767585, 0.133333333333333, 0, 0.188561808316413, -0.163299316185545},    {0.471404520791032, -0.23094010767585, 0.133333333333333, 0, -0.188561808316413, -0.163299316185545},    {0.471404520791032, 0, -0.266666666666667, -0.243432247780074, 0, 0.0544331053951817}};        // Interesting (new) part    // Tables of derivatives of the polynomial base (transpose)    const static double dmats0[6][6] = \    {{0, 0, 0, 0, 0, 0},    {4.89897948556635, 0, 0, 0, 0, 0},    {0, 0, 0, 0, 0, 0},    {0, 9.48683298050514, 0, 0, 0, 0},    {4, 0, 7.07106781186548, 0, 0, 0},    {0, 0, 0, 0, 0, 0}};        const static double dmats1[6][6] = \    {{0, 0, 0, 0, 0, 0},    {2.44948974278318, 0, 0, 0, 0, 0},    {4.24264068711928, 0, 0, 0, 0, 0},    {2.58198889747161, 4.74341649025257, -0.912870929175277, 0, 0, 0},    {2, 6.12372435695795, 3.53553390593274, 0, 0, 0},    {-2.3094010767585, 0, 8.16496580927726, 0, 0, 0}};        // Compute reference derivatives    // Declare pointer to array of derivatives on FIAT element    double *derivatives = new double [num_derivatives];        // Declare coefficients    double coeff0_0 = 0;    double coeff0_1 = 0;    double coeff0_2 = 0;    double coeff0_3 = 0;    double coeff0_4 = 0;    double coeff0_5 = 0;        // Declare new coefficients    double new_coeff0_0 = 0;    double new_coeff0_1 = 0;    double new_coeff0_2 = 0;    double new_coeff0_3 = 0;    double new_coeff0_4 = 0;    double new_coeff0_5 = 0;        // Loop possible derivatives    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)    {      // Get values from coefficients array      new_coeff0_0 = coefficients0[dof][0];      new_coeff0_1 = coefficients0[dof][1];      new_coeff0_2 = coefficients0[dof][2];      new_coeff0_3 = coefficients0[dof][3];      new_coeff0_4 = coefficients0[dof][4];      new_coeff0_5 = coefficients0[dof][5];          // Loop derivative order      for (unsigned int j = 0; j < n; j++)      {        // Update old coefficients        coeff0_0 = new_coeff0_0;        coeff0_1 = new_coeff0_1;        coeff0_2 = new_coeff0_2;        coeff0_3 = new_coeff0_3;        coeff0_4 = new_coeff0_4;        coeff0_5 = new_coeff0_5;            if(combinations[deriv_num][j] == 0)        {          new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0] + coeff0_3*dmats0[3][0] + coeff0_4*dmats0[4][0] + coeff0_5*dmats0[5][0];          new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1] + coeff0_3*dmats0[3][1] + coeff0_4*dmats0[4][1] + coeff0_5*dmats0[5][1];          new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2] + coeff0_3*dmats0[3][2] + coeff0_4*dmats0[4][2] + coeff0_5*dmats0[5][2];          new_coeff0_3 = coeff0_0*dmats0[0][3] + coeff0_1*dmats0[1][3] + coeff0_2*dmats0[2][3] + coeff0_3*dmats0[3][3] + coeff0_4*dmats0[4][3] + coeff0_5*dmats0[5][3];          new_coeff0_4 = coeff0_0*dmats0[0][4] + coeff0_1*dmats0[1][4] + coeff0_2*dmats0[2][4] + coeff0_3*dmats0[3][4] + coeff0_4*dmats0[4][4] + coeff0_5*dmats0[5][4];          new_coeff0_5 = coeff0_0*dmats0[0][5] + coeff0_1*dmats0[1][5] + coeff0_2*dmats0[2][5] + coeff0_3*dmats0[3][5] + coeff0_4*dmats0[4][5] + coeff0_5*dmats0[5][5];        }        if(combinations[deriv_num][j] == 1)        {          new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0] + coeff0_3*dmats1[3][0] + coeff0_4*dmats1[4][0] + coeff0_5*dmats1[5][0];          new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1] + coeff0_3*dmats1[3][1] + coeff0_4*dmats1[4][1] + coeff0_5*dmats1[5][1];          new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2] + coeff0_3*dmats1[3][2] + coeff0_4*dmats1[4][2] + coeff0_5*dmats1[5][2];          new_coeff0_3 = coeff0_0*dmats1[0][3] + coeff0_1*dmats1[1][3] + coeff0_2*dmats1[2][3] + coeff0_3*dmats1[3][3] + coeff0_4*dmats1[4][3] + coeff0_5*dmats1[5][3];          new_coeff0_4 = coeff0_0*dmats1[0][4] + coeff0_1*dmats1[1][4] + coeff0_2*dmats1[2][4] + coeff0_3*dmats1[3][4] + coeff0_4*dmats1[4][4] + coeff0_5*dmats1[5][4];          new_coeff0_5 = coeff0_0*dmats1[0][5] + coeff0_1*dmats1[1][5] + coeff0_2*dmats1[2][5] + coeff0_3*dmats1[3][5] + coeff0_4*dmats1[4][5] + coeff0_5*dmats1[5][5];        }          }      // Compute derivatives on reference element as dot product of coefficients and basisvalues      derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2 + new_coeff0_3*basisvalue3 + new_coeff0_4*basisvalue4 + new_coeff0_5*basisvalue5;    }        // Transform derivatives back to physical element    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        values[row] += transform[row][col]*derivatives[col];      }    }    // Delete pointer to array of derivatives on FIAT element    delete [] derivatives;        // Delete pointer to array of combinations of derivatives and transform    for (unsigned int row = 0; row < num_derivatives; row++)    {      delete [] combinations[row];      delete [] transform[row];    }        delete [] combinations;    delete [] transform;  }  /// Evaluate order n derivatives of all basis functions at given point in cell  virtual void evaluate_basis_derivatives_all(unsigned int n,                                              double* values,                                              const double* coordinates,                                              const ufc::cell& c) const  {    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");  }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    // The reference points, direction and weights:    const static double X[6][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}, {{0.5, 0.5}}, {{0, 0.5}}, {{0.5, 0}}};    const static double W[6][1] = {{1}, {1}, {1}, {1}, {1}, {1}};    const static double D[6][1][1] = {{{1}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}}};        const double * const * x = c.coordinates;    double result = 0.0;    // Iterate over the points:    // Evaluate basis functions for affine mapping    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];    const double w1 = X[i][0][0];    const double w2 = X[i][0][1];        // Compute affine mapping y = F(X)    double y[2];    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];        // Evaluate function at physical points    double values[1];    f.evaluate(values, y, c);        // Map function values using appropriate mapping    // Affine map: Do nothing        // Note that we do not map the weights (yet).        // Take directional components    for(int k = 0; k < 1; k++)      result += values[k]*D[i][0][k];    // Multiply by weights     result *= W[i][0];        return result;  }  /// Evaluate linear functionals for all dofs on the function f  virtual void evaluate_dofs(double* values,                             const ufc::function& f,                             const ufc::cell& c) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[1] = dof_values[1];    vertex_values[2] = dof_values[2];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 1;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    return new UFC_PoissonP2BilinearForm_finite_element_1();  }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_PoissonP2BilinearForm_dof_map_0: public ufc::dof_map{private:  unsigned int __global_dimension;public:  /// Constructor  UFC_PoissonP2BilinearForm_dof_map_0() : ufc::dof_map()  {    __global_dimension = 0;  }  /// Destructor  virtual ~UFC_PoissonP2BilinearForm_dof_map_0()  {    // Do nothing  }  /// Return a string identifying the dof map  virtual const char* signature() const  {    return "FFC dof map for Lagrange finite element of degree 2 on a triangle";  }  /// Return true iff mesh entities of topological dimension d are needed  virtual bool needs_mesh_entities(unsigned int d) const  {    switch ( d )    {    case 0:      return true;      break;    case 1:      return true;      break;    case 2:      return false;      break;    }    return false;  }  /// Initialize dof map for mesh (return true iff init_cell() is needed)  virtual bool init_mesh(const ufc::mesh& m)  {    __global_dimension = m.num_entities[0] + m.num_entities[1];    return false;  }  /// Initialize dof map for given cell  virtual void init_cell(const ufc::mesh& m,                         const ufc::cell& c)  {    // Do nothing  }  /// Finish initialization of dof map for cells  virtual void init_cell_finalize()  {    // Do nothing  }  /// Return the dimension of the global finite element function space  virtual unsigned int global_dimension() const  {    return __global_dimension;  }  /// Return the dimension of the local finite element function space  virtual unsigned int local_dimension() const  {    return 6;  }  // Return the geometric dimension of the coordinates this dof map provides  virtual unsigned int geometric_dimension() const  {    return 2;  }  /// Return the number of dofs on each cell facet  virtual unsigned int num_facet_dofs() const  {    return 3;  }  /// Return the number of dofs associated with each cell entity of dimension d  virtual unsigned int num_entity_dofs(unsigned int d) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Tabulate the local-to-global mapping of dofs on a cell  virtual void tabulate_dofs(unsigned int* dofs,                             const ufc::mesh& m,                             const ufc::cell& c) const  {    dofs[0] = c.entity_indices[0][0];    dofs[1] = c.entity_indices[0][1];    dofs[2] = c.entity_indices[0][2];    unsigned int offset = m.num_entities[0];    dofs[3] = offset + c.entity_indices[1][0];    dofs[4] = offset + c.entity_indices[1][1];    dofs[5] = offset + c.entity_indices[1][2];  }  /// Tabulate the local-to-local mapping from facet dofs to cell dofs  virtual void tabulate_facet_dofs(unsigned int* dofs,                                   unsigned int facet) const  {    switch ( facet )    {    case 0:      dofs[0] = 1;      dofs[1] = 2;      dofs[2] = 3;      break;    case 1:      dofs[0] = 0;      dofs[1] = 2;      dofs[2] = 4;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -