📄 poissonp2.h
字号:
new_coeff0_3 = coeff0_0*dmats0[0][3] + coeff0_1*dmats0[1][3] + coeff0_2*dmats0[2][3] + coeff0_3*dmats0[3][3] + coeff0_4*dmats0[4][3] + coeff0_5*dmats0[5][3]; new_coeff0_4 = coeff0_0*dmats0[0][4] + coeff0_1*dmats0[1][4] + coeff0_2*dmats0[2][4] + coeff0_3*dmats0[3][4] + coeff0_4*dmats0[4][4] + coeff0_5*dmats0[5][4]; new_coeff0_5 = coeff0_0*dmats0[0][5] + coeff0_1*dmats0[1][5] + coeff0_2*dmats0[2][5] + coeff0_3*dmats0[3][5] + coeff0_4*dmats0[4][5] + coeff0_5*dmats0[5][5]; } if(combinations[deriv_num][j] == 1) { new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0] + coeff0_3*dmats1[3][0] + coeff0_4*dmats1[4][0] + coeff0_5*dmats1[5][0]; new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1] + coeff0_3*dmats1[3][1] + coeff0_4*dmats1[4][1] + coeff0_5*dmats1[5][1]; new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2] + coeff0_3*dmats1[3][2] + coeff0_4*dmats1[4][2] + coeff0_5*dmats1[5][2]; new_coeff0_3 = coeff0_0*dmats1[0][3] + coeff0_1*dmats1[1][3] + coeff0_2*dmats1[2][3] + coeff0_3*dmats1[3][3] + coeff0_4*dmats1[4][3] + coeff0_5*dmats1[5][3]; new_coeff0_4 = coeff0_0*dmats1[0][4] + coeff0_1*dmats1[1][4] + coeff0_2*dmats1[2][4] + coeff0_3*dmats1[3][4] + coeff0_4*dmats1[4][4] + coeff0_5*dmats1[5][4]; new_coeff0_5 = coeff0_0*dmats1[0][5] + coeff0_1*dmats1[1][5] + coeff0_2*dmats1[2][5] + coeff0_3*dmats1[3][5] + coeff0_4*dmats1[4][5] + coeff0_5*dmats1[5][5]; } } // Compute derivatives on reference element as dot product of coefficients and basisvalues derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2 + new_coeff0_3*basisvalue3 + new_coeff0_4*basisvalue4 + new_coeff0_5*basisvalue5; } // Transform derivatives back to physical element for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { values[row] += transform[row][col]*derivatives[col]; } } // Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives and transform for (unsigned int row = 0; row < num_derivatives; row++) { delete [] combinations[row]; delete [] transform[row]; } delete [] combinations; delete [] transform; } /// Evaluate order n derivatives of all basis functions at given point in cell virtual void evaluate_basis_derivatives_all(unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented."); } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { // The reference points, direction and weights: const static double X[6][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}, {{0.5, 0.5}}, {{0, 0.5}}, {{0.5, 0}}}; const static double W[6][1] = {{1}, {1}, {1}, {1}, {1}, {1}}; const static double D[6][1][1] = {{{1}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}}}; const double * const * x = c.coordinates; double result = 0.0; // Iterate over the points: // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0][0] - X[i][0][1]; const double w1 = X[i][0][0]; const double w2 = X[i][0][1]; // Compute affine mapping y = F(X) double y[2]; y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0]; y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1]; // Evaluate function at physical points double values[1]; f.evaluate(values, y, c); // Map function values using appropriate mapping // Affine map: Do nothing // Note that we do not map the weights (yet). // Take directional components for(int k = 0; k < 1; k++) result += values[k]*D[i][0][k]; // Multiply by weights result *= W[i][0]; return result; } /// Evaluate linear functionals for all dofs on the function f virtual void evaluate_dofs(double* values, const ufc::function& f, const ufc::cell& c) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Evaluate at vertices and use affine mapping vertex_values[0] = dof_values[0]; vertex_values[1] = dof_values[1]; vertex_values[2] = dof_values[2]; } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 1; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new UFC_PoissonP2BilinearForm_finite_element_0(); }};/// This class defines the interface for a finite element.class UFC_PoissonP2BilinearForm_finite_element_1: public ufc::finite_element{public: /// Constructor UFC_PoissonP2BilinearForm_finite_element_1() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_PoissonP2BilinearForm_finite_element_1() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Lagrange finite element of degree 2 on a triangle"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::triangle; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 6; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 0; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 1; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; const double J_01 = element_coordinates[2][0] - element_coordinates[0][0]; const double J_10 = element_coordinates[1][1] - element_coordinates[0][1]; const double J_11 = element_coordinates[2][1] - element_coordinates[0][1]; // Compute determinant of Jacobian const double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian // Get coordinates and map to the reference (UFC) element double x = (element_coordinates[0][1]*element_coordinates[2][0] -\ element_coordinates[0][0]*element_coordinates[2][1] +\ J_11*coordinates[0] - J_01*coordinates[1]) / detJ; double y = (element_coordinates[1][1]*element_coordinates[0][0] -\ element_coordinates[1][0]*element_coordinates[0][1] -\ J_10*coordinates[0] + J_00*coordinates[1]) / detJ; // Map coordinates to the reference square if (std::abs(y - 1.0) < 1e-14) x = -1.0; else x = 2.0 *x/(1.0 - y) - 1.0; y = 2.0*y - 1.0; // Reset values *values = 0; // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings const double scalings_y_0 = 1; const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y); const double scalings_y_2 = scalings_y_1*(0.5 - 0.5*y); // Compute psitilde_a const double psitilde_a_0 = 1; const double psitilde_a_1 = x; const double psitilde_a_2 = 1.5*x*psitilde_a_1 - 0.5*psitilde_a_0; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; const double psitilde_bs_0_1 = 1.5*y + 0.5; const double psitilde_bs_0_2 = 0.111111111111111*psitilde_bs_0_1 + 1.66666666666667*y*psitilde_bs_0_1 - 0.555555555555556*psitilde_bs_0_0; const double psitilde_bs_1_0 = 1; const double psitilde_bs_1_1 = 2.5*y + 1.5; const double psitilde_bs_2_0 = 1; // Compute basisvalues const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0; const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0; const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1; const double basisvalue3 = 2.73861278752583*psitilde_a_2*scalings_y_2*psitilde_bs_2_0; const double basisvalue4 = 2.12132034355964*psitilde_a_1*scalings_y_1*psitilde_bs_1_1; const double basisvalue5 = 1.22474487139159*psitilde_a_0*scalings_y_0*psitilde_bs_0_2; // Table(s) of coefficients const static double coefficients0[6][6] = \ {{0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}, {0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}, {0, 0, 0.2, 0, 0, 0.163299316185545}, {0.471404520791032, 0.23094010767585, 0.133333333333333, 0, 0.188561808316413, -0.163299316185545}, {0.471404520791032, -0.23094010767585, 0.133333333333333, 0, -0.188561808316413, -0.163299316185545}, {0.471404520791032, 0, -0.266666666666667, -0.243432247780074, 0, 0.0544331053951817}}; // Extract relevant coefficients const double coeff0_0 = coefficients0[dof][0]; const double coeff0_1 = coefficients0[dof][1]; const double coeff0_2 = coefficients0[dof][2]; const double coeff0_3 = coefficients0[dof][3]; const double coeff0_4 = coefficients0[dof][4]; const double coeff0_5 = coefficients0[dof][5]; // Compute value(s) *values = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2 + coeff0_3*basisvalue3 + coeff0_4*basisvalue4 + coeff0_5*basisvalue5; } /// Evaluate all basis functions at given point in cell virtual void evaluate_basis_all(double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented."); } /// Evaluate order n derivatives of basis function i at given point in cell virtual void evaluate_basis_derivatives(unsigned int i, unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; const double J_01 = element_coordinates[2][0] - element_coordinates[0][0]; const double J_10 = element_coordinates[1][1] - element_coordinates[0][1]; const double J_11 = element_coordinates[2][1] - element_coordinates[0][1]; // Compute determinant of Jacobian const double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian // Get coordinates and map to the reference (UFC) element double x = (element_coordinates[0][1]*element_coordinates[2][0] -\ element_coordinates[0][0]*element_coordinates[2][1] +\ J_11*coordinates[0] - J_01*coordinates[1]) / detJ; double y = (element_coordinates[1][1]*element_coordinates[0][0] -\ element_coordinates[1][0]*element_coordinates[0][1] -\ J_10*coordinates[0] + J_00*coordinates[1]) / detJ; // Map coordinates to the reference square if (std::abs(y - 1.0) < 1e-14) x = -1.0; else x = 2.0 *x/(1.0 - y) - 1.0; y = 2.0*y - 1.0; // Compute number of derivatives unsigned int num_derivatives = 1; for (unsigned int j = 0; j < n; j++) num_derivatives *= 2; // Declare pointer to two dimensional array that holds combinations of derivatives and initialise unsigned int **combinations = new unsigned int *[num_derivatives]; for (unsigned int j = 0; j < num_derivatives; j++) { combinations[j] = new unsigned int [n]; for (unsigned int k = 0; k < n; k++) combinations[j][k] = 0; } // Generate combinations of derivatives for (unsigned int row = 1; row < num_derivatives; row++) { for (unsigned int num = 0; num < row; num++) { for (unsigned int col = n-1; col+1 > 0; col--) { if (combinations[row][col] + 1 > 1) combinations[row][col] = 0; else { combinations[row][col] += 1; break; } } } } // Compute inverse of Jacobian const double Jinv[2][2] = {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}}; // Declare transformation matrix // Declare pointer to two dimensional array and initialise double **transform = new double *[num_derivatives]; for (unsigned int j = 0; j < num_derivatives; j++) { transform[j] = new double [num_derivatives]; for (unsigned int k = 0; k < num_derivatives; k++) transform[j][k] = 1; } // Construct transformation matrix for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { for (unsigned int k = 0; k < n; k++) transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -