📄 poissonp1.h
字号:
const double det = std::abs(detJ); // Compute geometry tensors const double G0_0_0 = det*(Jinv_00*Jinv_00 + Jinv_01*Jinv_01); const double G0_0_1 = det*(Jinv_00*Jinv_10 + Jinv_01*Jinv_11); const double G0_1_0 = det*(Jinv_10*Jinv_00 + Jinv_11*Jinv_01); const double G0_1_1 = det*(Jinv_10*Jinv_10 + Jinv_11*Jinv_11); // Compute element tensor A[0] = 0.5*G0_0_0 + 0.5*G0_0_1 + 0.5*G0_1_0 + 0.5*G0_1_1; A[1] = -0.5*G0_0_0 - 0.5*G0_1_0; A[2] = -0.5*G0_0_1 - 0.5*G0_1_1; A[3] = -0.5*G0_0_0 - 0.5*G0_0_1; A[4] = 0.5*G0_0_0; A[5] = 0.5*G0_0_1; A[6] = -0.5*G0_1_0 - 0.5*G0_1_1; A[7] = 0.5*G0_1_0; A[8] = 0.5*G0_1_1; }};/// This class defines the interface for the assembly of the global/// tensor corresponding to a form with r + n arguments, that is, a/// mapping////// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R////// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r/// global tensor A is defined by////// A = a(V1, V2, ..., Vr, w1, w2, ..., wn),////// where each argument Vj represents the application to the/// sequence of basis functions of Vj and w1, w2, ..., wn are given/// fixed functions (coefficients).class UFC_PoissonP1BilinearForm: public ufc::form{public: /// Constructor UFC_PoissonP1BilinearForm() : ufc::form() { // Do nothing } /// Destructor virtual ~UFC_PoissonP1BilinearForm() { // Do nothing } /// Return a string identifying the form virtual const char* signature() const { return "(dXa0[0, 1]/dxb0[0, 1])(dXa1[0, 1]/dxb0[0, 1]) | ((d/dXa0[0, 1])vi0[0, 1, 2])*((d/dXa1[0, 1])vi1[0, 1, 2])*dX(0)"; } /// Return the rank of the global tensor (r) virtual unsigned int rank() const { return 2; } /// Return the number of coefficients (n) virtual unsigned int num_coefficients() const { return 0; } /// Return the number of cell integrals virtual unsigned int num_cell_integrals() const { return 1; } /// Return the number of exterior facet integrals virtual unsigned int num_exterior_facet_integrals() const { return 0; } /// Return the number of interior facet integrals virtual unsigned int num_interior_facet_integrals() const { return 0; } /// Create a new finite element for argument function i virtual ufc::finite_element* create_finite_element(unsigned int i) const { switch ( i ) { case 0: return new UFC_PoissonP1BilinearForm_finite_element_0(); break; case 1: return new UFC_PoissonP1BilinearForm_finite_element_1(); break; } return 0; } /// Create a new dof map for argument function i virtual ufc::dof_map* create_dof_map(unsigned int i) const { switch ( i ) { case 0: return new UFC_PoissonP1BilinearForm_dof_map_0(); break; case 1: return new UFC_PoissonP1BilinearForm_dof_map_1(); break; } return 0; } /// Create a new cell integral on sub domain i virtual ufc::cell_integral* create_cell_integral(unsigned int i) const { return new UFC_PoissonP1BilinearForm_cell_integral_0(); } /// Create a new exterior facet integral on sub domain i virtual ufc::exterior_facet_integral* create_exterior_facet_integral(unsigned int i) const { return 0; } /// Create a new interior facet integral on sub domain i virtual ufc::interior_facet_integral* create_interior_facet_integral(unsigned int i) const { return 0; }};/// This class defines the interface for a finite element.class UFC_PoissonP1LinearForm_finite_element_0: public ufc::finite_element{public: /// Constructor UFC_PoissonP1LinearForm_finite_element_0() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_PoissonP1LinearForm_finite_element_0() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Lagrange finite element of degree 1 on a triangle"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::triangle; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 3; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 0; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 1; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; const double J_01 = element_coordinates[2][0] - element_coordinates[0][0]; const double J_10 = element_coordinates[1][1] - element_coordinates[0][1]; const double J_11 = element_coordinates[2][1] - element_coordinates[0][1]; // Compute determinant of Jacobian const double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian // Get coordinates and map to the reference (UFC) element double x = (element_coordinates[0][1]*element_coordinates[2][0] -\ element_coordinates[0][0]*element_coordinates[2][1] +\ J_11*coordinates[0] - J_01*coordinates[1]) / detJ; double y = (element_coordinates[1][1]*element_coordinates[0][0] -\ element_coordinates[1][0]*element_coordinates[0][1] -\ J_10*coordinates[0] + J_00*coordinates[1]) / detJ; // Map coordinates to the reference square if (std::abs(y - 1.0) < 1e-14) x = -1.0; else x = 2.0 *x/(1.0 - y) - 1.0; y = 2.0*y - 1.0; // Reset values *values = 0; // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings const double scalings_y_0 = 1; const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y); // Compute psitilde_a const double psitilde_a_0 = 1; const double psitilde_a_1 = x; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; const double psitilde_bs_0_1 = 1.5*y + 0.5; const double psitilde_bs_1_0 = 1; // Compute basisvalues const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0; const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0; const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1; // Table(s) of coefficients const static double coefficients0[3][3] = \ {{0.471404520791032, -0.288675134594813, -0.166666666666667}, {0.471404520791032, 0.288675134594813, -0.166666666666667}, {0.471404520791032, 0, 0.333333333333333}}; // Extract relevant coefficients const double coeff0_0 = coefficients0[dof][0]; const double coeff0_1 = coefficients0[dof][1]; const double coeff0_2 = coefficients0[dof][2]; // Compute value(s) *values = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2; } /// Evaluate all basis functions at given point in cell virtual void evaluate_basis_all(double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented."); } /// Evaluate order n derivatives of basis function i at given point in cell virtual void evaluate_basis_derivatives(unsigned int i, unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; const double J_01 = element_coordinates[2][0] - element_coordinates[0][0]; const double J_10 = element_coordinates[1][1] - element_coordinates[0][1]; const double J_11 = element_coordinates[2][1] - element_coordinates[0][1]; // Compute determinant of Jacobian const double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian // Get coordinates and map to the reference (UFC) element double x = (element_coordinates[0][1]*element_coordinates[2][0] -\ element_coordinates[0][0]*element_coordinates[2][1] +\ J_11*coordinates[0] - J_01*coordinates[1]) / detJ; double y = (element_coordinates[1][1]*element_coordinates[0][0] -\ element_coordinates[1][0]*element_coordinates[0][1] -\ J_10*coordinates[0] + J_00*coordinates[1]) / detJ; // Map coordinates to the reference square if (std::abs(y - 1.0) < 1e-14) x = -1.0; else x = 2.0 *x/(1.0 - y) - 1.0; y = 2.0*y - 1.0; // Compute number of derivatives unsigned int num_derivatives = 1; for (unsigned int j = 0; j < n; j++) num_derivatives *= 2; // Declare pointer to two dimensional array that holds combinations of derivatives and initialise unsigned int **combinations = new unsigned int *[num_derivatives]; for (unsigned int j = 0; j < num_derivatives; j++) { combinations[j] = new unsigned int [n]; for (unsigned int k = 0; k < n; k++) combinations[j][k] = 0; } // Generate combinations of derivatives for (unsigned int row = 1; row < num_derivatives; row++) { for (unsigned int num = 0; num < row; num++) { for (unsigned int col = n-1; col+1 > 0; col--) { if (combinations[row][col] + 1 > 1) combinations[row][col] = 0; else { combinations[row][col] += 1; break; } } } } // Compute inverse of Jacobian const double Jinv[2][2] = {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}}; // Declare transformation matrix // Declare pointer to two dimensional array and initialise double **transform = new double *[num_derivatives]; for (unsigned int j = 0; j < num_derivatives; j++) { transform[j] = new double [num_derivatives]; for (unsigned int k = 0; k < num_derivatives; k++) transform[j][k] = 1; } // Construct transformation matrix for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { for (unsigned int k = 0; k < n; k++) transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; } } // Reset values for (unsigned int j = 0; j < 1*num_derivatives; j++) values[j] = 0; // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings const double scalings_y_0 = 1; const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y); // Compute psitilde_a const double psitilde_a_0 = 1; const double psitilde_a_1 = x; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; const double psitilde_bs_0_1 = 1.5*y + 0.5; const double psitilde_bs_1_0 = 1; // Compute basisvalues const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0; const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0; const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1; // Table(s) of coefficients const static double coefficients0[3][3] = \ {{0.471404520791032, -0.288675134594813, -0.166666666666667}, {0.471404520791032, 0.288675134594813, -0.166666666666667}, {0.471404520791032, 0, 0.333333333333333}}; // Interesting (new) part // Tables of derivatives of the polynomial base (transpose) const static double dmats0[3][3] = \ {{0, 0, 0}, {4.89897948556636, 0, 0}, {0, 0, 0}}; const static double dmats1[3][3] = \ {{0, 0, 0}, {2.44948974278318, 0, 0}, {4.24264068711928, 0, 0}}; // Compute reference derivatives
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -