⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stokes.h

📁 利用C
💻 H
📖 第 1 页 / 共 5 页
字号:
      // Compute psitilde_a      const double psitilde_a_0 = 1;      const double psitilde_a_1 = x;          // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;      const double psitilde_bs_0_1 = 1.5*y + 0.5;      const double psitilde_bs_1_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;          // Table(s) of coefficients      const static double coefficients0[3][3] =   \      {{0.471404520791032, -0.288675134594813, -0.166666666666667},      {0.471404520791032, 0.288675134594813, -0.166666666666667},      {0.471404520791032, 0, 0.333333333333333}};          // Interesting (new) part      // Tables of derivatives of the polynomial base (transpose)      const static double dmats0[3][3] =   \      {{0, 0, 0},      {4.89897948556636, 0, 0},      {0, 0, 0}};          const static double dmats1[3][3] =   \      {{0, 0, 0},      {2.44948974278318, 0, 0},      {4.24264068711928, 0, 0}};          // Compute reference derivatives      // Declare pointer to array of derivatives on FIAT element      double *derivatives = new double [num_derivatives];          // Declare coefficients      double coeff0_0 = 0;      double coeff0_1 = 0;      double coeff0_2 = 0;          // Declare new coefficients      double new_coeff0_0 = 0;      double new_coeff0_1 = 0;      double new_coeff0_2 = 0;          // Loop possible derivatives      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)      {        // Get values from coefficients array        new_coeff0_0 = coefficients0[dof][0];        new_coeff0_1 = coefficients0[dof][1];        new_coeff0_2 = coefficients0[dof][2];            // Loop derivative order        for (unsigned int j = 0; j < n; j++)        {          // Update old coefficients          coeff0_0 = new_coeff0_0;          coeff0_1 = new_coeff0_1;          coeff0_2 = new_coeff0_2;              if(combinations[deriv_num][j] == 0)          {            new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];            new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];            new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];          }          if(combinations[deriv_num][j] == 1)          {            new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];            new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];            new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];          }            }        // Compute derivatives on reference element as dot product of coefficients and basisvalues        derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;      }          // Transform derivatives back to physical element      for (unsigned int row = 0; row < num_derivatives; row++)      {        for (unsigned int col = 0; col < num_derivatives; col++)        {          values[row] += transform[row][col]*derivatives[col];        }      }      // Delete pointer to array of derivatives on FIAT element      delete [] derivatives;          // Delete pointer to array of combinations of derivatives and transform      for (unsigned int row = 0; row < num_derivatives; row++)      {        delete [] combinations[row];        delete [] transform[row];      }          delete [] combinations;      delete [] transform;    }        if (3 <= i && i <= 5)    {      // Map degree of freedom to element degree of freedom      const unsigned int dof = i - 3;          // Generate scalings      const double scalings_y_0 = 1;      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);          // Compute psitilde_a      const double psitilde_a_0 = 1;      const double psitilde_a_1 = x;          // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;      const double psitilde_bs_0_1 = 1.5*y + 0.5;      const double psitilde_bs_1_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;          // Table(s) of coefficients      const static double coefficients0[3][3] =   \      {{0.471404520791032, -0.288675134594813, -0.166666666666667},      {0.471404520791032, 0.288675134594813, -0.166666666666667},      {0.471404520791032, 0, 0.333333333333333}};          // Interesting (new) part      // Tables of derivatives of the polynomial base (transpose)      const static double dmats0[3][3] =   \      {{0, 0, 0},      {4.89897948556636, 0, 0},      {0, 0, 0}};          const static double dmats1[3][3] =   \      {{0, 0, 0},      {2.44948974278318, 0, 0},      {4.24264068711928, 0, 0}};          // Compute reference derivatives      // Declare pointer to array of derivatives on FIAT element      double *derivatives = new double [num_derivatives];          // Declare coefficients      double coeff0_0 = 0;      double coeff0_1 = 0;      double coeff0_2 = 0;          // Declare new coefficients      double new_coeff0_0 = 0;      double new_coeff0_1 = 0;      double new_coeff0_2 = 0;          // Loop possible derivatives      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)      {        // Get values from coefficients array        new_coeff0_0 = coefficients0[dof][0];        new_coeff0_1 = coefficients0[dof][1];        new_coeff0_2 = coefficients0[dof][2];            // Loop derivative order        for (unsigned int j = 0; j < n; j++)        {          // Update old coefficients          coeff0_0 = new_coeff0_0;          coeff0_1 = new_coeff0_1;          coeff0_2 = new_coeff0_2;              if(combinations[deriv_num][j] == 0)          {            new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];            new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];            new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];          }          if(combinations[deriv_num][j] == 1)          {            new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];            new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];            new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];          }            }        // Compute derivatives on reference element as dot product of coefficients and basisvalues        derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;      }          // Transform derivatives back to physical element      for (unsigned int row = 0; row < num_derivatives; row++)      {        for (unsigned int col = 0; col < num_derivatives; col++)        {          values[num_derivatives + row] += transform[row][col]*derivatives[col];        }      }      // Delete pointer to array of derivatives on FIAT element      delete [] derivatives;          // Delete pointer to array of combinations of derivatives and transform      for (unsigned int row = 0; row < num_derivatives; row++)      {        delete [] combinations[row];        delete [] transform[row];      }          delete [] combinations;      delete [] transform;    }      }  /// Evaluate order n derivatives of all basis functions at given point in cell  virtual void evaluate_basis_derivatives_all(unsigned int n,                                              double* values,                                              const double* coordinates,                                              const ufc::cell& c) const  {    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");  }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    // The reference points, direction and weights:    const static double X[6][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}, {{0, 0}}, {{1, 0}}, {{0, 1}}};    const static double W[6][1] = {{1}, {1}, {1}, {1}, {1}, {1}};    const static double D[6][1][2] = {{{1, 0}}, {{1, 0}}, {{1, 0}}, {{0, 1}}, {{0, 1}}, {{0, 1}}};        const double * const * x = c.coordinates;    double result = 0.0;    // Iterate over the points:    // Evaluate basis functions for affine mapping    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];    const double w1 = X[i][0][0];    const double w2 = X[i][0][1];        // Compute affine mapping y = F(X)    double y[2];    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];        // Evaluate function at physical points    double values[2];    f.evaluate(values, y, c);        // Map function values using appropriate mapping    // Affine map: Do nothing        // Note that we do not map the weights (yet).        // Take directional components    for(int k = 0; k < 2; k++)      result += values[k]*D[i][0][k];    // Multiply by weights     result *= W[i][0];        return result;  }  /// Evaluate linear functionals for all dofs on the function f  virtual void evaluate_dofs(double* values,                             const ufc::function& f,                             const ufc::cell& c) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[2] = dof_values[1];    vertex_values[4] = dof_values[2];    // Evaluate at vertices and use affine mapping    vertex_values[1] = dof_values[3];    vertex_values[3] = dof_values[4];    vertex_values[5] = dof_values[5];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 2;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    switch ( i )    {    case 0:      return new UFC_StokesBilinearForm_finite_element_0_0_0();      break;    case 1:      return new UFC_StokesBilinearForm_finite_element_0_0_1();      break;    }    return 0;  }};/// This class defines the interface for a finite element.class UFC_StokesBilinearForm_finite_element_0_1: public ufc::finite_element{public:  /// Constructor  UFC_StokesBilinearForm_finite_element_0_1() : ufc::finite_element()  {    // Do nothing  }  /// Destructor  virtual ~UFC_StokesBilinearForm_finite_element_0_1()  {    // Do nothing  }  /// Return a string identifying the finite element  virtual const char* signature() const  {    return "Lagrange finite element of degree 1 on a triangle";  }  /// Return the cell shape  virtual ufc::shape cell_shape() const  {    return ufc::triangle;  }  /// Return the dimension of the finite element function space  virtual unsigned int space_dimension() const  {    return 3;  }  /// Return the rank of the value space  virtual unsigned int value_rank() const  {    return 0;  }  /// Return the dimension of the value space for axis i  virtual unsigned int value_dimension(unsigned int i) const  {    return 1;  }  /// Evaluate basis function i at given point in cell  virtual void evaluate_basis(unsigned int i,                              double* values,                              const double* coordinates,                              const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * element_coordinates = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];          // Compute determinant of Jacobian    const double detJ = J_00*J_11 - J_01*J_10;        // Compute inverse of Jacobian    

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -