⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stokes.h

📁 利用C
💻 H
📖 第 1 页 / 共 5 页
字号:
    }    // Delete pointer to array of derivatives on FIAT element    delete [] derivatives;        // Delete pointer to array of combinations of derivatives and transform    for (unsigned int row = 0; row < num_derivatives; row++)    {      delete [] combinations[row];      delete [] transform[row];    }        delete [] combinations;    delete [] transform;  }  /// Evaluate order n derivatives of all basis functions at given point in cell  virtual void evaluate_basis_derivatives_all(unsigned int n,                                              double* values,                                              const double* coordinates,                                              const ufc::cell& c) const  {    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");  }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    // The reference points, direction and weights:    const static double X[3][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}};    const static double W[3][1] = {{1}, {1}, {1}};    const static double D[3][1][1] = {{{1}}, {{1}}, {{1}}};        const double * const * x = c.coordinates;    double result = 0.0;    // Iterate over the points:    // Evaluate basis functions for affine mapping    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];    const double w1 = X[i][0][0];    const double w2 = X[i][0][1];        // Compute affine mapping y = F(X)    double y[2];    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];        // Evaluate function at physical points    double values[1];    f.evaluate(values, y, c);        // Map function values using appropriate mapping    // Affine map: Do nothing        // Note that we do not map the weights (yet).        // Take directional components    for(int k = 0; k < 1; k++)      result += values[k]*D[i][0][k];    // Multiply by weights     result *= W[i][0];        return result;  }  /// Evaluate linear functionals for all dofs on the function f  virtual void evaluate_dofs(double* values,                             const ufc::function& f,                             const ufc::cell& c) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[1] = dof_values[1];    vertex_values[2] = dof_values[2];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 1;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    return new UFC_StokesBilinearForm_finite_element_0_0_1();  }};/// This class defines the interface for a finite element.class UFC_StokesBilinearForm_finite_element_0_0: public ufc::finite_element{public:  /// Constructor  UFC_StokesBilinearForm_finite_element_0_0() : ufc::finite_element()  {    // Do nothing  }  /// Destructor  virtual ~UFC_StokesBilinearForm_finite_element_0_0()  {    // Do nothing  }  /// Return a string identifying the finite element  virtual const char* signature() const  {    return "Mixed finite element: [Lagrange finite element of degree 1 on a triangle, Lagrange finite element of degree 1 on a triangle]";  }  /// Return the cell shape  virtual ufc::shape cell_shape() const  {    return ufc::triangle;  }  /// Return the dimension of the finite element function space  virtual unsigned int space_dimension() const  {    return 6;  }  /// Return the rank of the value space  virtual unsigned int value_rank() const  {    return 1;  }  /// Return the dimension of the value space for axis i  virtual unsigned int value_dimension(unsigned int i) const  {    return 2;  }  /// Evaluate basis function i at given point in cell  virtual void evaluate_basis(unsigned int i,                              double* values,                              const double* coordinates,                              const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * element_coordinates = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];          // Compute determinant of Jacobian    const double detJ = J_00*J_11 - J_01*J_10;        // Compute inverse of Jacobian        // Get coordinates and map to the reference (UFC) element    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\                element_coordinates[0][0]*element_coordinates[2][1] +\                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\                element_coordinates[1][0]*element_coordinates[0][1] -\                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;        // Map coordinates to the reference square    if (std::abs(y - 1.0) < 1e-14)      x = -1.0;    else      x = 2.0 *x/(1.0 - y) - 1.0;    y = 2.0*y - 1.0;        // Reset values    values[0] = 0;    values[1] = 0;        if (0 <= i && i <= 2)    {      // Map degree of freedom to element degree of freedom      const unsigned int dof = i;          // Generate scalings      const double scalings_y_0 = 1;      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);          // Compute psitilde_a      const double psitilde_a_0 = 1;      const double psitilde_a_1 = x;          // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;      const double psitilde_bs_0_1 = 1.5*y + 0.5;      const double psitilde_bs_1_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;          // Table(s) of coefficients      const static double coefficients0[3][3] =   \      {{0.471404520791032, -0.288675134594813, -0.166666666666667},      {0.471404520791032, 0.288675134594813, -0.166666666666667},      {0.471404520791032, 0, 0.333333333333333}};          // Extract relevant coefficients      const double coeff0_0 =   coefficients0[dof][0];      const double coeff0_1 =   coefficients0[dof][1];      const double coeff0_2 =   coefficients0[dof][2];          // Compute value(s)      values[0] = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;    }        if (3 <= i && i <= 5)    {      // Map degree of freedom to element degree of freedom      const unsigned int dof = i - 3;          // Generate scalings      const double scalings_y_0 = 1;      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);          // Compute psitilde_a      const double psitilde_a_0 = 1;      const double psitilde_a_1 = x;          // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;      const double psitilde_bs_0_1 = 1.5*y + 0.5;      const double psitilde_bs_1_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;          // Table(s) of coefficients      const static double coefficients0[3][3] =   \      {{0.471404520791032, -0.288675134594813, -0.166666666666667},      {0.471404520791032, 0.288675134594813, -0.166666666666667},      {0.471404520791032, 0, 0.333333333333333}};          // Extract relevant coefficients      const double coeff0_0 =   coefficients0[dof][0];      const double coeff0_1 =   coefficients0[dof][1];      const double coeff0_2 =   coefficients0[dof][2];          // Compute value(s)      values[1] = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;    }      }  /// Evaluate all basis functions at given point in cell  virtual void evaluate_basis_all(double* values,                                  const double* coordinates,                                  const ufc::cell& c) const  {    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");  }  /// Evaluate order n derivatives of basis function i at given point in cell  virtual void evaluate_basis_derivatives(unsigned int i,                                          unsigned int n,                                          double* values,                                          const double* coordinates,                                          const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * element_coordinates = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];          // Compute determinant of Jacobian    const double detJ = J_00*J_11 - J_01*J_10;        // Compute inverse of Jacobian        // Get coordinates and map to the reference (UFC) element    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\                element_coordinates[0][0]*element_coordinates[2][1] +\                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\                element_coordinates[1][0]*element_coordinates[0][1] -\                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;        // Map coordinates to the reference square    if (std::abs(y - 1.0) < 1e-14)      x = -1.0;    else      x = 2.0 *x/(1.0 - y) - 1.0;    y = 2.0*y - 1.0;        // Compute number of derivatives    unsigned int num_derivatives = 1;        for (unsigned int j = 0; j < n; j++)      num_derivatives *= 2;            // Declare pointer to two dimensional array that holds combinations of derivatives and initialise    unsigned int **combinations = new unsigned int *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      combinations[j] = new unsigned int [n];      for (unsigned int k = 0; k < n; k++)        combinations[j][k] = 0;    }            // Generate combinations of derivatives    for (unsigned int row = 1; row < num_derivatives; row++)    {      for (unsigned int num = 0; num < row; num++)      {        for (unsigned int col = n-1; col+1 > 0; col--)        {          if (combinations[row][col] + 1 > 1)            combinations[row][col] = 0;          else          {            combinations[row][col] += 1;            break;          }        }      }    }        // Compute inverse of Jacobian    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};        // Declare transformation matrix    // Declare pointer to two dimensional array and initialise    double **transform = new double *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      transform[j] = new double [num_derivatives];      for (unsigned int k = 0; k < num_derivatives; k++)        transform[j][k] = 1;    }        // Construct transformation matrix    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        for (unsigned int k = 0; k < n; k++)          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];      }    }        // Reset values    for (unsigned int j = 0; j < 2*num_derivatives; j++)      values[j] = 0;        if (0 <= i && i <= 2)    {      // Map degree of freedom to element degree of freedom      const unsigned int dof = i;          // Generate scalings      const double scalings_y_0 = 1;      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);    

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -