📄 mixedpoisson.h
字号:
// Declare pointer to two dimensional array and initialise double **transform = new double *[num_derivatives]; for (unsigned int j = 0; j < num_derivatives; j++) { transform[j] = new double [num_derivatives]; for (unsigned int k = 0; k < num_derivatives; k++) transform[j][k] = 1; } // Construct transformation matrix for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { for (unsigned int k = 0; k < n; k++) transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; } } // Reset values for (unsigned int j = 0; j < 1*num_derivatives; j++) values[j] = 0; // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings const double scalings_y_0 = 1; // Compute psitilde_a const double psitilde_a_0 = 1; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; // Compute basisvalues const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0; // Table(s) of coefficients const static double coefficients0[1][1] = \ {{1.41421356237309}}; // Interesting (new) part // Tables of derivatives of the polynomial base (transpose) const static double dmats0[1][1] = \ {{0}}; const static double dmats1[1][1] = \ {{0}}; // Compute reference derivatives // Declare pointer to array of derivatives on FIAT element double *derivatives = new double [num_derivatives]; // Declare coefficients double coeff0_0 = 0; // Declare new coefficients double new_coeff0_0 = 0; // Loop possible derivatives for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++) { // Get values from coefficients array new_coeff0_0 = coefficients0[dof][0]; // Loop derivative order for (unsigned int j = 0; j < n; j++) { // Update old coefficients coeff0_0 = new_coeff0_0; if(combinations[deriv_num][j] == 0) { new_coeff0_0 = coeff0_0*dmats0[0][0]; } if(combinations[deriv_num][j] == 1) { new_coeff0_0 = coeff0_0*dmats1[0][0]; } } // Compute derivatives on reference element as dot product of coefficients and basisvalues derivatives[deriv_num] = new_coeff0_0*basisvalue0; } // Transform derivatives back to physical element for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { values[row] += transform[row][col]*derivatives[col]; } } // Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives and transform for (unsigned int row = 0; row < num_derivatives; row++) { delete [] combinations[row]; delete [] transform[row]; } delete [] combinations; delete [] transform; } /// Evaluate order n derivatives of all basis functions at given point in cell virtual void evaluate_basis_derivatives_all(unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented."); } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { // The reference points, direction and weights: const static double X[1][1][2] = {{{0.333333333333333, 0.333333333333333}}}; const static double W[1][1] = {{1}}; const static double D[1][1][1] = {{{1}}}; const double * const * x = c.coordinates; double result = 0.0; // Iterate over the points: // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0][0] - X[i][0][1]; const double w1 = X[i][0][0]; const double w2 = X[i][0][1]; // Compute affine mapping y = F(X) double y[2]; y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0]; y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1]; // Evaluate function at physical points double values[1]; f.evaluate(values, y, c); // Map function values using appropriate mapping // Affine map: Do nothing // Note that we do not map the weights (yet). // Take directional components for(int k = 0; k < 1; k++) result += values[k]*D[i][0][k]; // Multiply by weights result *= W[i][0]; return result; } /// Evaluate linear functionals for all dofs on the function f virtual void evaluate_dofs(double* values, const ufc::function& f, const ufc::cell& c) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Evaluate at vertices and use affine mapping vertex_values[0] = dof_values[0]; vertex_values[1] = dof_values[0]; vertex_values[2] = dof_values[0]; } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 1; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new UFC_MixedPoissonBilinearForm_finite_element_0_1(); }};/// This class defines the interface for a finite element.class UFC_MixedPoissonBilinearForm_finite_element_0: public ufc::finite_element{public: /// Constructor UFC_MixedPoissonBilinearForm_finite_element_0() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_MixedPoissonBilinearForm_finite_element_0() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Mixed finite element: [Brezzi-Douglas-Marini finite element of degree 1 on a triangle, Discontinuous Lagrange finite element of degree 0 on a triangle]"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::triangle; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 7; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 1; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 3; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; const double J_01 = element_coordinates[2][0] - element_coordinates[0][0]; const double J_10 = element_coordinates[1][1] - element_coordinates[0][1]; const double J_11 = element_coordinates[2][1] - element_coordinates[0][1]; // Compute determinant of Jacobian const double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian // Get coordinates and map to the reference (UFC) element double x = (element_coordinates[0][1]*element_coordinates[2][0] -\ element_coordinates[0][0]*element_coordinates[2][1] +\ J_11*coordinates[0] - J_01*coordinates[1]) / detJ; double y = (element_coordinates[1][1]*element_coordinates[0][0] -\ element_coordinates[1][0]*element_coordinates[0][1] -\ J_10*coordinates[0] + J_00*coordinates[1]) / detJ; // Map coordinates to the reference square if (std::abs(y - 1.0) < 1e-14) x = -1.0; else x = 2.0 *x/(1.0 - y) - 1.0; y = 2.0*y - 1.0; // Reset values values[0] = 0; values[1] = 0; values[2] = 0; if (0 <= i && i <= 5) { // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings const double scalings_y_0 = 1; const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y); // Compute psitilde_a const double psitilde_a_0 = 1; const double psitilde_a_1 = x; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; const double psitilde_bs_0_1 = 1.5*y + 0.5; const double psitilde_bs_1_0 = 1; // Compute basisvalues const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0; const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0; const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1; // Table(s) of coefficients const static double coefficients0[6][3] = \ {{0.942809041582063, 0.577350269189626, -0.333333333333333}, {-0.471404520791032, -0.288675134594813, 0.166666666666667}, {0.471404520791031, -0.577350269189626, -0.666666666666667}, {0.471404520791032, 0.288675134594813, 0.833333333333333}, {-0.471404520791032, -0.288675134594813, 0.166666666666667}, {0.942809041582063, 0.577350269189626, -0.333333333333334}}; const static double coefficients1[6][3] = \ {{-0.471404520791032, 0, -0.333333333333333}, {0.942809041582063, 0, 0.666666666666667}, {0.471404520791032, 0, 0.333333333333333}, {-0.942809041582063, 0, -0.666666666666667}, {-0.471404520791032, 0.866025403784439, 0.166666666666667}, {-0.471404520791032, -0.866025403784439, 0.166666666666667}}; // Extract relevant coefficients const double coeff0_0 = coefficients0[dof][0]; const double coeff0_1 = coefficients0[dof][1]; const double coeff0_2 = coefficients0[dof][2]; const double coeff1_0 = coefficients1[dof][0]; const double coeff1_1 = coefficients1[dof][1]; const double coeff1_2 = coefficients1[dof][2]; // Compute value(s) const double tmp0_0 = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2; const double tmp0_1 = coeff1_0*basisvalue0 + coeff1_1*basisvalue1 + coeff1_2*basisvalue2; // Using contravariant Piola transform to map values back to the physical element values[0] = (1.0/detJ)*(J_00*tmp0_0 + J_01*tmp0_1); values[1] = (1.0/detJ)*(J_10*tmp0_0 + J_11*tmp0_1); } if (6 <= i && i <= 6) { // Map degree of freedom to element degree of freedom const unsigned int dof = i - 6; // Generate scalings const double scalings_y_0 = 1; // Compute psitilde_a const double psitilde_a_0 = 1; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; // Compute basisvalues const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0; // Table(s) of coefficients const static double coefficients0[1][1] = \ {{1.41421356237309}}; // Extract relevant coefficients const double coeff0_0 = coefficients0[dof][0]; // Compute value(s)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -