📄 mixedpoisson.h
字号:
new_coeff1_2 = coeff1_0*dmats0[0][2] + coeff1_1*dmats0[1][2] + coeff1_2*dmats0[2][2]; } if(combinations[deriv_num][j] == 1) { new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0]; new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1]; new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2]; new_coeff1_0 = coeff1_0*dmats1[0][0] + coeff1_1*dmats1[1][0] + coeff1_2*dmats1[2][0]; new_coeff1_1 = coeff1_0*dmats1[0][1] + coeff1_1*dmats1[1][1] + coeff1_2*dmats1[2][1]; new_coeff1_2 = coeff1_0*dmats1[0][2] + coeff1_1*dmats1[1][2] + coeff1_2*dmats1[2][2]; } } // Compute derivatives on reference element as dot product of coefficients and basisvalues // Correct values by the contravariant Piola transform const double tmp0_0 = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2; const double tmp0_1 = new_coeff1_0*basisvalue0 + new_coeff1_1*basisvalue1 + new_coeff1_2*basisvalue2; derivatives[deriv_num] = (1.0/detJ)*(J_00*tmp0_0 + J_01*tmp0_1); derivatives[num_derivatives + deriv_num] = (1.0/detJ)*(J_10*tmp0_0 + J_11*tmp0_1); } // Transform derivatives back to physical element for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { values[row] += transform[row][col]*derivatives[col]; values[num_derivatives + row] += transform[row][col]*derivatives[num_derivatives + col]; } } // Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives and transform for (unsigned int row = 0; row < num_derivatives; row++) { delete [] combinations[row]; delete [] transform[row]; } delete [] combinations; delete [] transform; } /// Evaluate order n derivatives of all basis functions at given point in cell virtual void evaluate_basis_derivatives_all(unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented."); } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { // The reference points, direction and weights: const static double X[6][1][2] = {{{0.666666666666667, 0.333333333333333}}, {{0.333333333333333, 0.666666666666667}}, {{0, 0.333333333333333}}, {{0, 0.666666666666667}}, {{0.333333333333333, 0}}, {{0.666666666666667, 0}}}; const static double W[6][1] = {{1}, {1}, {1}, {1}, {1}, {1}}; const static double D[6][1][2] = {{{1, 1}}, {{1, 1}}, {{1, 0}}, {{1, 0}}, {{0, -1}}, {{0, -1}}}; // Extract vertex coordinates const double * const * x = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = x[1][0] - x[0][0]; const double J_01 = x[2][0] - x[0][0]; const double J_10 = x[1][1] - x[0][1]; const double J_11 = x[2][1] - x[0][1]; // Compute determinant of Jacobian double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian const double Jinv_00 = J_11 / detJ; const double Jinv_01 = -J_01 / detJ; const double Jinv_10 = -J_10 / detJ; const double Jinv_11 = J_00 / detJ; double copyofvalues[2]; double result = 0.0; // Iterate over the points: // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0][0] - X[i][0][1]; const double w1 = X[i][0][0]; const double w2 = X[i][0][1]; // Compute affine mapping y = F(X) double y[2]; y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0]; y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1]; // Evaluate function at physical points double values[2]; f.evaluate(values, y, c); // Map function values using appropriate mapping // Copy old values: copyofvalues[0] = values[0]; copyofvalues[1] = values[1]; // Do the inverse of div piola values[0] = detJ*(Jinv_00*copyofvalues[0]+Jinv_01*copyofvalues[1]); values[1] = detJ*(Jinv_10*copyofvalues[0]+Jinv_11*copyofvalues[1]); // Note that we do not map the weights (yet). // Take directional components for(int k = 0; k < 2; k++) result += values[k]*D[i][0][k]; // Multiply by weights result *= W[i][0]; return result; } /// Evaluate linear functionals for all dofs on the function f virtual void evaluate_dofs(double* values, const ufc::function& f, const ufc::cell& c) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Extract vertex coordinates const double * const * x = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = x[1][0] - x[0][0]; const double J_01 = x[2][0] - x[0][0]; const double J_10 = x[1][1] - x[0][1]; const double J_11 = x[2][1] - x[0][1]; // Compute determinant of Jacobian double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian // Evaluate at vertices and use Piola mapping vertex_values[0] = (1.0/detJ)*(dof_values[2]*2*J_00 + dof_values[3]*J_00 + dof_values[4]*(-2*J_01) + dof_values[5]*J_01); vertex_values[2] = (1.0/detJ)*(dof_values[0]*2*J_00 + dof_values[1]*J_00 + dof_values[4]*(J_00 + J_01) + dof_values[5]*(2*J_00 - 2*J_01)); vertex_values[4] = (1.0/detJ)*(dof_values[0]*J_01 + dof_values[1]*2*J_01 + dof_values[2]*(J_00 + J_01) + dof_values[3]*(2*J_00 - 2*J_01)); vertex_values[1] = (1.0/detJ)*(dof_values[2]*2*J_10 + dof_values[3]*J_10 + dof_values[4]*(-2*J_11) + dof_values[5]*J_11); vertex_values[3] = (1.0/detJ)*(dof_values[0]*2*J_10 + dof_values[1]*J_10 + dof_values[4]*(J_10 + J_11) + dof_values[5]*(2*J_10 - 2*J_11)); vertex_values[5] = (1.0/detJ)*(dof_values[0]*J_11 + dof_values[1]*2*J_11 + dof_values[2]*(J_10 + J_11) + dof_values[3]*(2*J_10 - 2*J_11)); } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 1; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new UFC_MixedPoissonBilinearForm_finite_element_0_0(); }};/// This class defines the interface for a finite element.class UFC_MixedPoissonBilinearForm_finite_element_0_1: public ufc::finite_element{public: /// Constructor UFC_MixedPoissonBilinearForm_finite_element_0_1() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_MixedPoissonBilinearForm_finite_element_0_1() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Discontinuous Lagrange finite element of degree 0 on a triangle"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::triangle; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 1; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 0; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 1; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; const double J_01 = element_coordinates[2][0] - element_coordinates[0][0]; const double J_10 = element_coordinates[1][1] - element_coordinates[0][1]; const double J_11 = element_coordinates[2][1] - element_coordinates[0][1]; // Compute determinant of Jacobian const double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian // Get coordinates and map to the reference (UFC) element double x = (element_coordinates[0][1]*element_coordinates[2][0] -\ element_coordinates[0][0]*element_coordinates[2][1] +\ J_11*coordinates[0] - J_01*coordinates[1]) / detJ; double y = (element_coordinates[1][1]*element_coordinates[0][0] -\ element_coordinates[1][0]*element_coordinates[0][1] -\ J_10*coordinates[0] + J_00*coordinates[1]) / detJ; // Map coordinates to the reference square if (std::abs(y - 1.0) < 1e-14) x = -1.0; else x = 2.0 *x/(1.0 - y) - 1.0; y = 2.0*y - 1.0; // Reset values *values = 0; // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings const double scalings_y_0 = 1; // Compute psitilde_a const double psitilde_a_0 = 1; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; // Compute basisvalues const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0; // Table(s) of coefficients const static double coefficients0[1][1] = \ {{1.41421356237309}}; // Extract relevant coefficients const double coeff0_0 = coefficients0[dof][0]; // Compute value(s) *values = coeff0_0*basisvalue0; } /// Evaluate all basis functions at given point in cell virtual void evaluate_basis_all(double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented."); } /// Evaluate order n derivatives of basis function i at given point in cell virtual void evaluate_basis_derivatives(unsigned int i, unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; const double J_01 = element_coordinates[2][0] - element_coordinates[0][0]; const double J_10 = element_coordinates[1][1] - element_coordinates[0][1]; const double J_11 = element_coordinates[2][1] - element_coordinates[0][1]; // Compute determinant of Jacobian const double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian // Get coordinates and map to the reference (UFC) element double x = (element_coordinates[0][1]*element_coordinates[2][0] -\ element_coordinates[0][0]*element_coordinates[2][1] +\ J_11*coordinates[0] - J_01*coordinates[1]) / detJ; double y = (element_coordinates[1][1]*element_coordinates[0][0] -\ element_coordinates[1][0]*element_coordinates[0][1] -\ J_10*coordinates[0] + J_00*coordinates[1]) / detJ; // Map coordinates to the reference square if (std::abs(y - 1.0) < 1e-14) x = -1.0; else x = 2.0 *x/(1.0 - y) - 1.0; y = 2.0*y - 1.0; // Compute number of derivatives unsigned int num_derivatives = 1; for (unsigned int j = 0; j < n; j++) num_derivatives *= 2; // Declare pointer to two dimensional array that holds combinations of derivatives and initialise unsigned int **combinations = new unsigned int *[num_derivatives]; for (unsigned int j = 0; j < num_derivatives; j++) { combinations[j] = new unsigned int [n]; for (unsigned int k = 0; k < n; k++) combinations[j][k] = 0; } // Generate combinations of derivatives for (unsigned int row = 1; row < num_derivatives; row++) { for (unsigned int num = 0; num < row; num++) { for (unsigned int col = n-1; col+1 > 0; col--) { if (combinations[row][col] + 1 > 1) combinations[row][col] = 0; else { combinations[row][col] += 1; break; } } } } // Compute inverse of Jacobian const double Jinv[2][2] = {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}}; // Declare transformation matrix
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -