⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 poisson.h

📁 利用C
💻 H
📖 第 1 页 / 共 5 页
字号:
    double values[1];    f.evaluate(values, y, c);        // Map function values using appropriate mapping    // Affine map: Do nothing        // Note that we do not map the weights (yet).        // Take directional components    for(int k = 0; k < 1; k++)      result += values[k]*D[i][0][k];    // Multiply by weights     result *= W[i][0];        return result;  }  /// Evaluate linear functionals for all dofs on the function f  virtual void evaluate_dofs(double* values,                             const ufc::function& f,                             const ufc::cell& c) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[1] = dof_values[1];    vertex_values[2] = dof_values[2];    vertex_values[3] = dof_values[3];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 1;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    return new UFC_PoissonBilinearForm_finite_element_1();  }};/// This class defines the interface for a finite element.class UFC_PoissonBilinearForm_finite_element_2_0: public ufc::finite_element{public:  /// Constructor  UFC_PoissonBilinearForm_finite_element_2_0() : ufc::finite_element()  {    // Do nothing  }  /// Destructor  virtual ~UFC_PoissonBilinearForm_finite_element_2_0()  {    // Do nothing  }  /// Return a string identifying the finite element  virtual const char* signature() const  {    return "Discontinuous Lagrange finite element of degree 0 on a tetrahedron";  }  /// Return the cell shape  virtual ufc::shape cell_shape() const  {    return ufc::tetrahedron;  }  /// Return the dimension of the finite element function space  virtual unsigned int space_dimension() const  {    return 1;  }  /// Return the rank of the value space  virtual unsigned int value_rank() const  {    return 0;  }  /// Return the dimension of the value space for axis i  virtual unsigned int value_dimension(unsigned int i) const  {    return 1;  }  /// Evaluate basis function i at given point in cell  virtual void evaluate_basis(unsigned int i,                              double* values,                              const double* coordinates,                              const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * element_coordinates = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];    const double J_02 = element_coordinates[3][0] - element_coordinates[0][0];    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];    const double J_12 = element_coordinates[3][1] - element_coordinates[0][1];    const double J_20 = element_coordinates[1][2] - element_coordinates[0][2];    const double J_21 = element_coordinates[2][2] - element_coordinates[0][2];    const double J_22 = element_coordinates[3][2] - element_coordinates[0][2];          // Compute sub determinants    const double d00 = J_11*J_22 - J_12*J_21;    const double d01 = J_12*J_20 - J_10*J_22;    const double d02 = J_10*J_21 - J_11*J_20;        const double d10 = J_02*J_21 - J_01*J_22;    const double d11 = J_00*J_22 - J_02*J_20;    const double d12 = J_01*J_20 - J_00*J_21;        const double d20 = J_01*J_12 - J_02*J_11;    const double d21 = J_02*J_10 - J_00*J_12;    const double d22 = J_00*J_11 - J_01*J_10;          // Compute determinant of Jacobian    double detJ = J_00*d00 + J_10*d10 + J_20*d20;        // Compute inverse of Jacobian        // Compute constants    const double C0 = d00*(element_coordinates[0][0] - element_coordinates[2][0] - element_coordinates[3][0]) \                    + d10*(element_coordinates[0][1] - element_coordinates[2][1] - element_coordinates[3][1]) \                    + d20*(element_coordinates[0][2] - element_coordinates[2][2] - element_coordinates[3][2]);        const double C1 = d01*(element_coordinates[0][0] - element_coordinates[1][0] - element_coordinates[3][0]) \                    + d11*(element_coordinates[0][1] - element_coordinates[1][1] - element_coordinates[3][1]) \                    + d21*(element_coordinates[0][2] - element_coordinates[1][2] - element_coordinates[3][2]);        const double C2 = d02*(element_coordinates[0][0] - element_coordinates[1][0] - element_coordinates[2][0]) \                    + d12*(element_coordinates[0][1] - element_coordinates[1][1] - element_coordinates[2][1]) \                    + d22*(element_coordinates[0][2] - element_coordinates[1][2] - element_coordinates[2][2]);        // Get coordinates and map to the UFC reference element    double x = (C0 + d00*coordinates[0] + d10*coordinates[1] + d20*coordinates[2]) / detJ;    double y = (C1 + d01*coordinates[0] + d11*coordinates[1] + d21*coordinates[2]) / detJ;    double z = (C2 + d02*coordinates[0] + d12*coordinates[1] + d22*coordinates[2]) / detJ;        // Map coordinates to the reference cube    if (std::abs(y + z - 1.0) < 1e-14)      x = 1.0;    else      x = -2.0 * x/(y + z - 1.0) - 1.0;    if (std::abs(z - 1.0) < 1e-14)      y = -1.0;    else      y = 2.0 * y/(1.0 - z) - 1.0;    z = 2.0 * z - 1.0;        // Reset values    *values = 0;        // Map degree of freedom to element degree of freedom    const unsigned int dof = i;        // Generate scalings    const double scalings_y_0 = 1;    const double scalings_z_0 = 1;        // Compute psitilde_a    const double psitilde_a_0 = 1;        // Compute psitilde_bs    const double psitilde_bs_0_0 = 1;        // Compute psitilde_cs    const double psitilde_cs_00_0 = 1;        // Compute basisvalues    const double basisvalue0 = 0.866025403784439*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_0;        // Table(s) of coefficients    const static double coefficients0[1][1] = \    {{1.15470053837925}};        // Extract relevant coefficients    const double coeff0_0 = coefficients0[dof][0];        // Compute value(s)    *values = coeff0_0*basisvalue0;  }  /// Evaluate all basis functions at given point in cell  virtual void evaluate_basis_all(double* values,                                  const double* coordinates,                                  const ufc::cell& c) const  {    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");  }  /// Evaluate order n derivatives of basis function i at given point in cell  virtual void evaluate_basis_derivatives(unsigned int i,                                          unsigned int n,                                          double* values,                                          const double* coordinates,                                          const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * element_coordinates = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];    const double J_02 = element_coordinates[3][0] - element_coordinates[0][0];    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];    const double J_12 = element_coordinates[3][1] - element_coordinates[0][1];    const double J_20 = element_coordinates[1][2] - element_coordinates[0][2];    const double J_21 = element_coordinates[2][2] - element_coordinates[0][2];    const double J_22 = element_coordinates[3][2] - element_coordinates[0][2];          // Compute sub determinants    const double d00 = J_11*J_22 - J_12*J_21;    const double d01 = J_12*J_20 - J_10*J_22;    const double d02 = J_10*J_21 - J_11*J_20;        const double d10 = J_02*J_21 - J_01*J_22;    const double d11 = J_00*J_22 - J_02*J_20;    const double d12 = J_01*J_20 - J_00*J_21;        const double d20 = J_01*J_12 - J_02*J_11;    const double d21 = J_02*J_10 - J_00*J_12;    const double d22 = J_00*J_11 - J_01*J_10;          // Compute determinant of Jacobian    double detJ = J_00*d00 + J_10*d10 + J_20*d20;        // Compute inverse of Jacobian        // Compute constants    const double C0 = d00*(element_coordinates[0][0] - element_coordinates[2][0] - element_coordinates[3][0]) \                    + d10*(element_coordinates[0][1] - element_coordinates[2][1] - element_coordinates[3][1]) \                    + d20*(element_coordinates[0][2] - element_coordinates[2][2] - element_coordinates[3][2]);        const double C1 = d01*(element_coordinates[0][0] - element_coordinates[1][0] - element_coordinates[3][0]) \                    + d11*(element_coordinates[0][1] - element_coordinates[1][1] - element_coordinates[3][1]) \                    + d21*(element_coordinates[0][2] - element_coordinates[1][2] - element_coordinates[3][2]);        const double C2 = d02*(element_coordinates[0][0] - element_coordinates[1][0] - element_coordinates[2][0]) \                    + d12*(element_coordinates[0][1] - element_coordinates[1][1] - element_coordinates[2][1]) \                    + d22*(element_coordinates[0][2] - element_coordinates[1][2] - element_coordinates[2][2]);        // Get coordinates and map to the UFC reference element    double x = (C0 + d00*coordinates[0] + d10*coordinates[1] + d20*coordinates[2]) / detJ;    double y = (C1 + d01*coordinates[0] + d11*coordinates[1] + d21*coordinates[2]) / detJ;    double z = (C2 + d02*coordinates[0] + d12*coordinates[1] + d22*coordinates[2]) / detJ;        // Map coordinates to the reference cube    if (std::abs(y + z - 1.0) < 1e-14)      x = 1.0;    else      x = -2.0 * x/(y + z - 1.0) - 1.0;    if (std::abs(z - 1.0) < 1e-14)      y = -1.0;    else      y = 2.0 * y/(1.0 - z) - 1.0;    z = 2.0 * z - 1.0;        // Compute number of derivatives    unsigned int num_derivatives = 1;        for (unsigned int j = 0; j < n; j++)      num_derivatives *= 3;            // Declare pointer to two dimensional array that holds combinations of derivatives and initialise    unsigned int **combinations = new unsigned int *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      combinations[j] = new unsigned int [n];      for (unsigned int k = 0; k < n; k++)        combinations[j][k] = 0;    }            // Generate combinations of derivatives    for (unsigned int row = 1; row < num_derivatives; row++)    {      for (unsigned int num = 0; num < row; num++)      {        for (unsigned int col = n-1; col+1 > 0; col--)        {          if (combinations[row][col] + 1 > 2)            combinations[row][col] = 0;          else          {            combinations[row][col] += 1;            break;          }        }      }    }        // Compute inverse of Jacobian    const double Jinv[3][3] ={{d00 / detJ, d10 / detJ, d20 / detJ}, {d01 / detJ, d11 / detJ, d21 / detJ}, {d02 / detJ, d12 / detJ, d22 / detJ}};        // Declare transformation matrix    // Declare pointer to two dimensional array and initialise    double **transform = new double *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      transform[j] = new double [num_derivatives];      for (unsigned int k = 0; k < num_derivatives; k++)        transform[j][k] = 1;    }        // Construct transformation matrix    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        for (unsigned int k = 0; k < n; k++)          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];      }    }        // Reset values    for (unsigned int j = 0; j < 1*num_derivatives; j++)      values[j] = 0;        // Map degree of freedom to element degree of freedom    const unsigned int dof = i;    

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -