📄 poisson.h
字号:
double values[1]; f.evaluate(values, y, c); // Map function values using appropriate mapping // Affine map: Do nothing // Note that we do not map the weights (yet). // Take directional components for(int k = 0; k < 1; k++) result += values[k]*D[i][0][k]; // Multiply by weights result *= W[i][0]; return result; } /// Evaluate linear functionals for all dofs on the function f virtual void evaluate_dofs(double* values, const ufc::function& f, const ufc::cell& c) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Evaluate at vertices and use affine mapping vertex_values[0] = dof_values[0]; vertex_values[1] = dof_values[1]; vertex_values[2] = dof_values[2]; vertex_values[3] = dof_values[3]; } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 1; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new UFC_PoissonBilinearForm_finite_element_1(); }};/// This class defines the interface for a finite element.class UFC_PoissonBilinearForm_finite_element_2_0: public ufc::finite_element{public: /// Constructor UFC_PoissonBilinearForm_finite_element_2_0() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_PoissonBilinearForm_finite_element_2_0() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Discontinuous Lagrange finite element of degree 0 on a tetrahedron"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::tetrahedron; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 1; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 0; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 1; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; const double J_01 = element_coordinates[2][0] - element_coordinates[0][0]; const double J_02 = element_coordinates[3][0] - element_coordinates[0][0]; const double J_10 = element_coordinates[1][1] - element_coordinates[0][1]; const double J_11 = element_coordinates[2][1] - element_coordinates[0][1]; const double J_12 = element_coordinates[3][1] - element_coordinates[0][1]; const double J_20 = element_coordinates[1][2] - element_coordinates[0][2]; const double J_21 = element_coordinates[2][2] - element_coordinates[0][2]; const double J_22 = element_coordinates[3][2] - element_coordinates[0][2]; // Compute sub determinants const double d00 = J_11*J_22 - J_12*J_21; const double d01 = J_12*J_20 - J_10*J_22; const double d02 = J_10*J_21 - J_11*J_20; const double d10 = J_02*J_21 - J_01*J_22; const double d11 = J_00*J_22 - J_02*J_20; const double d12 = J_01*J_20 - J_00*J_21; const double d20 = J_01*J_12 - J_02*J_11; const double d21 = J_02*J_10 - J_00*J_12; const double d22 = J_00*J_11 - J_01*J_10; // Compute determinant of Jacobian double detJ = J_00*d00 + J_10*d10 + J_20*d20; // Compute inverse of Jacobian // Compute constants const double C0 = d00*(element_coordinates[0][0] - element_coordinates[2][0] - element_coordinates[3][0]) \ + d10*(element_coordinates[0][1] - element_coordinates[2][1] - element_coordinates[3][1]) \ + d20*(element_coordinates[0][2] - element_coordinates[2][2] - element_coordinates[3][2]); const double C1 = d01*(element_coordinates[0][0] - element_coordinates[1][0] - element_coordinates[3][0]) \ + d11*(element_coordinates[0][1] - element_coordinates[1][1] - element_coordinates[3][1]) \ + d21*(element_coordinates[0][2] - element_coordinates[1][2] - element_coordinates[3][2]); const double C2 = d02*(element_coordinates[0][0] - element_coordinates[1][0] - element_coordinates[2][0]) \ + d12*(element_coordinates[0][1] - element_coordinates[1][1] - element_coordinates[2][1]) \ + d22*(element_coordinates[0][2] - element_coordinates[1][2] - element_coordinates[2][2]); // Get coordinates and map to the UFC reference element double x = (C0 + d00*coordinates[0] + d10*coordinates[1] + d20*coordinates[2]) / detJ; double y = (C1 + d01*coordinates[0] + d11*coordinates[1] + d21*coordinates[2]) / detJ; double z = (C2 + d02*coordinates[0] + d12*coordinates[1] + d22*coordinates[2]) / detJ; // Map coordinates to the reference cube if (std::abs(y + z - 1.0) < 1e-14) x = 1.0; else x = -2.0 * x/(y + z - 1.0) - 1.0; if (std::abs(z - 1.0) < 1e-14) y = -1.0; else y = 2.0 * y/(1.0 - z) - 1.0; z = 2.0 * z - 1.0; // Reset values *values = 0; // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings const double scalings_y_0 = 1; const double scalings_z_0 = 1; // Compute psitilde_a const double psitilde_a_0 = 1; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; // Compute psitilde_cs const double psitilde_cs_00_0 = 1; // Compute basisvalues const double basisvalue0 = 0.866025403784439*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_0; // Table(s) of coefficients const static double coefficients0[1][1] = \ {{1.15470053837925}}; // Extract relevant coefficients const double coeff0_0 = coefficients0[dof][0]; // Compute value(s) *values = coeff0_0*basisvalue0; } /// Evaluate all basis functions at given point in cell virtual void evaluate_basis_all(double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented."); } /// Evaluate order n derivatives of basis function i at given point in cell virtual void evaluate_basis_derivatives(unsigned int i, unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; const double J_01 = element_coordinates[2][0] - element_coordinates[0][0]; const double J_02 = element_coordinates[3][0] - element_coordinates[0][0]; const double J_10 = element_coordinates[1][1] - element_coordinates[0][1]; const double J_11 = element_coordinates[2][1] - element_coordinates[0][1]; const double J_12 = element_coordinates[3][1] - element_coordinates[0][1]; const double J_20 = element_coordinates[1][2] - element_coordinates[0][2]; const double J_21 = element_coordinates[2][2] - element_coordinates[0][2]; const double J_22 = element_coordinates[3][2] - element_coordinates[0][2]; // Compute sub determinants const double d00 = J_11*J_22 - J_12*J_21; const double d01 = J_12*J_20 - J_10*J_22; const double d02 = J_10*J_21 - J_11*J_20; const double d10 = J_02*J_21 - J_01*J_22; const double d11 = J_00*J_22 - J_02*J_20; const double d12 = J_01*J_20 - J_00*J_21; const double d20 = J_01*J_12 - J_02*J_11; const double d21 = J_02*J_10 - J_00*J_12; const double d22 = J_00*J_11 - J_01*J_10; // Compute determinant of Jacobian double detJ = J_00*d00 + J_10*d10 + J_20*d20; // Compute inverse of Jacobian // Compute constants const double C0 = d00*(element_coordinates[0][0] - element_coordinates[2][0] - element_coordinates[3][0]) \ + d10*(element_coordinates[0][1] - element_coordinates[2][1] - element_coordinates[3][1]) \ + d20*(element_coordinates[0][2] - element_coordinates[2][2] - element_coordinates[3][2]); const double C1 = d01*(element_coordinates[0][0] - element_coordinates[1][0] - element_coordinates[3][0]) \ + d11*(element_coordinates[0][1] - element_coordinates[1][1] - element_coordinates[3][1]) \ + d21*(element_coordinates[0][2] - element_coordinates[1][2] - element_coordinates[3][2]); const double C2 = d02*(element_coordinates[0][0] - element_coordinates[1][0] - element_coordinates[2][0]) \ + d12*(element_coordinates[0][1] - element_coordinates[1][1] - element_coordinates[2][1]) \ + d22*(element_coordinates[0][2] - element_coordinates[1][2] - element_coordinates[2][2]); // Get coordinates and map to the UFC reference element double x = (C0 + d00*coordinates[0] + d10*coordinates[1] + d20*coordinates[2]) / detJ; double y = (C1 + d01*coordinates[0] + d11*coordinates[1] + d21*coordinates[2]) / detJ; double z = (C2 + d02*coordinates[0] + d12*coordinates[1] + d22*coordinates[2]) / detJ; // Map coordinates to the reference cube if (std::abs(y + z - 1.0) < 1e-14) x = 1.0; else x = -2.0 * x/(y + z - 1.0) - 1.0; if (std::abs(z - 1.0) < 1e-14) y = -1.0; else y = 2.0 * y/(1.0 - z) - 1.0; z = 2.0 * z - 1.0; // Compute number of derivatives unsigned int num_derivatives = 1; for (unsigned int j = 0; j < n; j++) num_derivatives *= 3; // Declare pointer to two dimensional array that holds combinations of derivatives and initialise unsigned int **combinations = new unsigned int *[num_derivatives]; for (unsigned int j = 0; j < num_derivatives; j++) { combinations[j] = new unsigned int [n]; for (unsigned int k = 0; k < n; k++) combinations[j][k] = 0; } // Generate combinations of derivatives for (unsigned int row = 1; row < num_derivatives; row++) { for (unsigned int num = 0; num < row; num++) { for (unsigned int col = n-1; col+1 > 0; col--) { if (combinations[row][col] + 1 > 2) combinations[row][col] = 0; else { combinations[row][col] += 1; break; } } } } // Compute inverse of Jacobian const double Jinv[3][3] ={{d00 / detJ, d10 / detJ, d20 / detJ}, {d01 / detJ, d11 / detJ, d21 / detJ}, {d02 / detJ, d12 / detJ, d22 / detJ}}; // Declare transformation matrix // Declare pointer to two dimensional array and initialise double **transform = new double *[num_derivatives]; for (unsigned int j = 0; j < num_derivatives; j++) { transform[j] = new double [num_derivatives]; for (unsigned int k = 0; k < num_derivatives; k++) transform[j][k] = 1; } // Construct transformation matrix for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { for (unsigned int k = 0; k < n; k++) transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; } } // Reset values for (unsigned int j = 0; j < 1*num_derivatives; j++) values[j] = 0; // Map degree of freedom to element degree of freedom const unsigned int dof = i;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -