📄 poisson.h
字号:
// Compute basisvalues const double basisvalue0 = 0.866025403784439*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_0; const double basisvalue1 = 2.73861278752583*psitilde_a_1*scalings_y_1*psitilde_bs_1_0*scalings_z_1*psitilde_cs_10_0; const double basisvalue2 = 1.58113883008419*psitilde_a_0*scalings_y_0*psitilde_bs_0_1*scalings_z_1*psitilde_cs_01_0; const double basisvalue3 = 1.11803398874989*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_1; // Table(s) of coefficients const static double coefficients0[4][4] = \ {{0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}, {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}, {0.288675134594813, 0, 0.210818510677892, -0.074535599249993}, {0.288675134594813, 0, 0, 0.223606797749979}}; // Interesting (new) part // Tables of derivatives of the polynomial base (transpose) const static double dmats0[4][4] = \ {{0, 0, 0, 0}, {6.32455532033676, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}; const static double dmats1[4][4] = \ {{0, 0, 0, 0}, {3.16227766016838, 0, 0, 0}, {5.47722557505166, 0, 0, 0}, {0, 0, 0, 0}}; const static double dmats2[4][4] = \ {{0, 0, 0, 0}, {3.16227766016838, 0, 0, 0}, {1.82574185835055, 0, 0, 0}, {5.16397779494322, 0, 0, 0}}; // Compute reference derivatives // Declare pointer to array of derivatives on FIAT element double *derivatives = new double [num_derivatives]; // Declare coefficients double coeff0_0 = 0; double coeff0_1 = 0; double coeff0_2 = 0; double coeff0_3 = 0; // Declare new coefficients double new_coeff0_0 = 0; double new_coeff0_1 = 0; double new_coeff0_2 = 0; double new_coeff0_3 = 0; // Loop possible derivatives for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++) { // Get values from coefficients array new_coeff0_0 = coefficients0[dof][0]; new_coeff0_1 = coefficients0[dof][1]; new_coeff0_2 = coefficients0[dof][2]; new_coeff0_3 = coefficients0[dof][3]; // Loop derivative order for (unsigned int j = 0; j < n; j++) { // Update old coefficients coeff0_0 = new_coeff0_0; coeff0_1 = new_coeff0_1; coeff0_2 = new_coeff0_2; coeff0_3 = new_coeff0_3; if(combinations[deriv_num][j] == 0) { new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0] + coeff0_3*dmats0[3][0]; new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1] + coeff0_3*dmats0[3][1]; new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2] + coeff0_3*dmats0[3][2]; new_coeff0_3 = coeff0_0*dmats0[0][3] + coeff0_1*dmats0[1][3] + coeff0_2*dmats0[2][3] + coeff0_3*dmats0[3][3]; } if(combinations[deriv_num][j] == 1) { new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0] + coeff0_3*dmats1[3][0]; new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1] + coeff0_3*dmats1[3][1]; new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2] + coeff0_3*dmats1[3][2]; new_coeff0_3 = coeff0_0*dmats1[0][3] + coeff0_1*dmats1[1][3] + coeff0_2*dmats1[2][3] + coeff0_3*dmats1[3][3]; } if(combinations[deriv_num][j] == 2) { new_coeff0_0 = coeff0_0*dmats2[0][0] + coeff0_1*dmats2[1][0] + coeff0_2*dmats2[2][0] + coeff0_3*dmats2[3][0]; new_coeff0_1 = coeff0_0*dmats2[0][1] + coeff0_1*dmats2[1][1] + coeff0_2*dmats2[2][1] + coeff0_3*dmats2[3][1]; new_coeff0_2 = coeff0_0*dmats2[0][2] + coeff0_1*dmats2[1][2] + coeff0_2*dmats2[2][2] + coeff0_3*dmats2[3][2]; new_coeff0_3 = coeff0_0*dmats2[0][3] + coeff0_1*dmats2[1][3] + coeff0_2*dmats2[2][3] + coeff0_3*dmats2[3][3]; } } // Compute derivatives on reference element as dot product of coefficients and basisvalues derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2 + new_coeff0_3*basisvalue3; } // Transform derivatives back to physical element for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { values[row] += transform[row][col]*derivatives[col]; } } // Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives and transform for (unsigned int row = 0; row < num_derivatives; row++) { delete [] combinations[row]; delete [] transform[row]; } delete [] combinations; delete [] transform; } /// Evaluate order n derivatives of all basis functions at given point in cell virtual void evaluate_basis_derivatives_all(unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented."); } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { // The reference points, direction and weights: const static double X[4][1][3] = {{{0, 0, 0}}, {{1, 0, 0}}, {{0, 1, 0}}, {{0, 0, 1}}}; const static double W[4][1] = {{1}, {1}, {1}, {1}}; const static double D[4][1][1] = {{{1}}, {{1}}, {{1}}, {{1}}}; const double * const * x = c.coordinates; double result = 0.0; // Iterate over the points: // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0][0] - X[i][0][1] - X[i][0][2]; const double w1 = X[i][0][0]; const double w2 = X[i][0][1]; const double w3 = X[i][0][2]; // Compute affine mapping y = F(X) double y[3]; y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0] + w3*x[3][0]; y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1] + w3*x[3][1]; y[2] = w0*x[0][2] + w1*x[1][2] + w2*x[2][2] + w3*x[3][2]; // Evaluate function at physical points double values[1]; f.evaluate(values, y, c); // Map function values using appropriate mapping // Affine map: Do nothing // Note that we do not map the weights (yet). // Take directional components for(int k = 0; k < 1; k++) result += values[k]*D[i][0][k]; // Multiply by weights result *= W[i][0]; return result; } /// Evaluate linear functionals for all dofs on the function f virtual void evaluate_dofs(double* values, const ufc::function& f, const ufc::cell& c) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Evaluate at vertices and use affine mapping vertex_values[0] = dof_values[0]; vertex_values[1] = dof_values[1]; vertex_values[2] = dof_values[2]; vertex_values[3] = dof_values[3]; } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 1; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new UFC_PoissonBilinearForm_finite_element_0(); }};/// This class defines the interface for a finite element.class UFC_PoissonBilinearForm_finite_element_1: public ufc::finite_element{public: /// Constructor UFC_PoissonBilinearForm_finite_element_1() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_PoissonBilinearForm_finite_element_1() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Lagrange finite element of degree 1 on a tetrahedron"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::tetrahedron; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 4; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 0; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 1; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; const double J_01 = element_coordinates[2][0] - element_coordinates[0][0]; const double J_02 = element_coordinates[3][0] - element_coordinates[0][0]; const double J_10 = element_coordinates[1][1] - element_coordinates[0][1]; const double J_11 = element_coordinates[2][1] - element_coordinates[0][1]; const double J_12 = element_coordinates[3][1] - element_coordinates[0][1]; const double J_20 = element_coordinates[1][2] - element_coordinates[0][2]; const double J_21 = element_coordinates[2][2] - element_coordinates[0][2]; const double J_22 = element_coordinates[3][2] - element_coordinates[0][2]; // Compute sub determinants const double d00 = J_11*J_22 - J_12*J_21; const double d01 = J_12*J_20 - J_10*J_22; const double d02 = J_10*J_21 - J_11*J_20; const double d10 = J_02*J_21 - J_01*J_22; const double d11 = J_00*J_22 - J_02*J_20; const double d12 = J_01*J_20 - J_00*J_21; const double d20 = J_01*J_12 - J_02*J_11; const double d21 = J_02*J_10 - J_00*J_12; const double d22 = J_00*J_11 - J_01*J_10; // Compute determinant of Jacobian double detJ = J_00*d00 + J_10*d10 + J_20*d20; // Compute inverse of Jacobian // Compute constants const double C0 = d00*(element_coordinates[0][0] - element_coordinates[2][0] - element_coordinates[3][0]) \ + d10*(element_coordinates[0][1] - element_coordinates[2][1] - element_coordinates[3][1]) \ + d20*(element_coordinates[0][2] - element_coordinates[2][2] - element_coordinates[3][2]); const double C1 = d01*(element_coordinates[0][0] - element_coordinates[1][0] - element_coordinates[3][0]) \ + d11*(element_coordinates[0][1] - element_coordinates[1][1] - element_coordinates[3][1]) \ + d21*(element_coordinates[0][2] - element_coordinates[1][2] - element_coordinates[3][2]); const double C2 = d02*(element_coordinates[0][0] - element_coordinates[1][0] - element_coordinates[2][0]) \ + d12*(element_coordinates[0][1] - element_coordinates[1][1] - element_coordinates[2][1]) \ + d22*(element_coordinates[0][2] - element_coordinates[1][2] - element_coordinates[2][2]); // Get coordinates and map to the UFC reference element double x = (C0 + d00*coordinates[0] + d10*coordinates[1] + d20*coordinates[2]) / detJ; double y = (C1 + d01*coordinates[0] + d11*coordinates[1] + d21*coordinates[2]) / detJ; double z = (C2 + d02*coordinates[0] + d12*coordinates[1] + d22*coordinates[2]) / detJ; // Map coordinates to the reference cube if (std::abs(y + z - 1.0) < 1e-14) x = 1.0; else x = -2.0 * x/(y + z - 1.0) - 1.0; if (std::abs(z - 1.0) < 1e-14) y = -1.0; else y = 2.0 * y/(1.0 - z) - 1.0; z = 2.0 * z - 1.0; // Reset values *values = 0; // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings const double scalings_y_0 = 1; const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y); const double scalings_z_0 = 1; const double scalings_z_1 = scalings_z_0*(0.5 - 0.5*z); // Compute psitilde_a const double psitilde_a_0 = 1; const double psitilde_a_1 = x; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; const double psitilde_bs_0_1 = 1.5*y + 0.5; const double psitilde_bs_1_0 = 1; // Compute psitilde_cs const double psitilde_cs_00_0 = 1;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -