📄 poisson.h
字号:
for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { values[row] += transform[row][col]*derivatives[col]; } } // Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives and transform for (unsigned int row = 0; row < num_derivatives; row++) { delete [] combinations[row]; delete [] transform[row]; } delete [] combinations; delete [] transform; } /// Evaluate order n derivatives of all basis functions at given point in cell virtual void evaluate_basis_derivatives_all(unsigned int n, double* values, const double* coordinates, const ufc::cell& c) const { throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented."); } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { // The reference points, direction and weights: const static double X[1][1][3] = {{{0.25, 0.25, 0.25}}}; const static double W[1][1] = {{1}}; const static double D[1][1][1] = {{{1}}}; const double * const * x = c.coordinates; double result = 0.0; // Iterate over the points: // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0][0] - X[i][0][1] - X[i][0][2]; const double w1 = X[i][0][0]; const double w2 = X[i][0][1]; const double w3 = X[i][0][2]; // Compute affine mapping y = F(X) double y[3]; y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0] + w3*x[3][0]; y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1] + w3*x[3][1]; y[2] = w0*x[0][2] + w1*x[1][2] + w2*x[2][2] + w3*x[3][2]; // Evaluate function at physical points double values[1]; f.evaluate(values, y, c); // Map function values using appropriate mapping // Affine map: Do nothing // Note that we do not map the weights (yet). // Take directional components for(int k = 0; k < 1; k++) result += values[k]*D[i][0][k]; // Multiply by weights result *= W[i][0]; return result; } /// Evaluate linear functionals for all dofs on the function f virtual void evaluate_dofs(double* values, const ufc::function& f, const ufc::cell& c) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Evaluate at vertices and use affine mapping vertex_values[0] = dof_values[0]; vertex_values[1] = dof_values[0]; vertex_values[2] = dof_values[0]; vertex_values[3] = dof_values[0]; } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 1; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new UFC_PoissonBilinearForm_finite_element_2(); }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_PoissonBilinearForm_dof_map_0: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor UFC_PoissonBilinearForm_dof_map_0() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~UFC_PoissonBilinearForm_dof_map_0() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Discontinuous Lagrange finite element of degree 1 on a tetrahedron"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return false; break; case 1: return false; break; case 2: return false; break; case 3: return true; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = 4*m.num_entities[3]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 4; } // Return the geometric dimension of the coordinates this dof map provides virtual unsigned int geometric_dimension() const { return 3; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 0; } /// Return the number of dofs associated with each cell entity of dimension d virtual unsigned int num_entity_dofs(unsigned int d) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = 4*c.entity_indices[3][0]; dofs[1] = 4*c.entity_indices[3][0] + 1; dofs[2] = 4*c.entity_indices[3][0] + 2; dofs[3] = 4*c.entity_indices[3][0] + 3; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: break; case 1: break; case 2: break; case 3: break; } } /// Tabulate the local-to-local mapping of dofs on entity (d, i) virtual void tabulate_entity_dofs(unsigned int* dofs, unsigned int d, unsigned int i) const { throw std::runtime_error("Not implemented (introduced in UFC v1.1)."); } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = x[0][0]; coordinates[0][1] = x[0][1]; coordinates[0][2] = x[0][2]; coordinates[1][0] = x[1][0]; coordinates[1][1] = x[1][1]; coordinates[1][2] = x[1][2]; coordinates[2][0] = x[2][0]; coordinates[2][1] = x[2][1]; coordinates[2][2] = x[2][2]; coordinates[3][0] = x[3][0]; coordinates[3][1] = x[3][1]; coordinates[3][2] = x[3][2]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new UFC_PoissonBilinearForm_dof_map_0(); }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_PoissonBilinearForm_dof_map_1: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor UFC_PoissonBilinearForm_dof_map_1() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~UFC_PoissonBilinearForm_dof_map_1() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Discontinuous Lagrange finite element of degree 1 on a tetrahedron"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return false; break; case 1: return false; break; case 2: return false; break; case 3: return true; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = 4*m.num_entities[3]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -