⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 poisson.h

📁 利用C
💻 H
📖 第 1 页 / 共 5 页
字号:
    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        values[row] += transform[row][col]*derivatives[col];      }    }    // Delete pointer to array of derivatives on FIAT element    delete [] derivatives;        // Delete pointer to array of combinations of derivatives and transform    for (unsigned int row = 0; row < num_derivatives; row++)    {      delete [] combinations[row];      delete [] transform[row];    }        delete [] combinations;    delete [] transform;  }  /// Evaluate order n derivatives of all basis functions at given point in cell  virtual void evaluate_basis_derivatives_all(unsigned int n,                                              double* values,                                              const double* coordinates,                                              const ufc::cell& c) const  {    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");  }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    // The reference points, direction and weights:    const static double X[1][1][3] = {{{0.25, 0.25, 0.25}}};    const static double W[1][1] = {{1}};    const static double D[1][1][1] = {{{1}}};        const double * const * x = c.coordinates;    double result = 0.0;    // Iterate over the points:    // Evaluate basis functions for affine mapping    const double w0 = 1.0 - X[i][0][0] - X[i][0][1] - X[i][0][2];    const double w1 = X[i][0][0];    const double w2 = X[i][0][1];    const double w3 = X[i][0][2];        // Compute affine mapping y = F(X)    double y[3];    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0] + w3*x[3][0];    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1] + w3*x[3][1];    y[2] = w0*x[0][2] + w1*x[1][2] + w2*x[2][2] + w3*x[3][2];        // Evaluate function at physical points    double values[1];    f.evaluate(values, y, c);        // Map function values using appropriate mapping    // Affine map: Do nothing        // Note that we do not map the weights (yet).        // Take directional components    for(int k = 0; k < 1; k++)      result += values[k]*D[i][0][k];    // Multiply by weights     result *= W[i][0];        return result;  }  /// Evaluate linear functionals for all dofs on the function f  virtual void evaluate_dofs(double* values,                             const ufc::function& f,                             const ufc::cell& c) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[1] = dof_values[0];    vertex_values[2] = dof_values[0];    vertex_values[3] = dof_values[0];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 1;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    return new UFC_PoissonBilinearForm_finite_element_2();  }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_PoissonBilinearForm_dof_map_0: public ufc::dof_map{private:  unsigned int __global_dimension;public:  /// Constructor  UFC_PoissonBilinearForm_dof_map_0() : ufc::dof_map()  {    __global_dimension = 0;  }  /// Destructor  virtual ~UFC_PoissonBilinearForm_dof_map_0()  {    // Do nothing  }  /// Return a string identifying the dof map  virtual const char* signature() const  {    return "FFC dof map for Discontinuous Lagrange finite element of degree 1 on a tetrahedron";  }  /// Return true iff mesh entities of topological dimension d are needed  virtual bool needs_mesh_entities(unsigned int d) const  {    switch ( d )    {    case 0:      return false;      break;    case 1:      return false;      break;    case 2:      return false;      break;    case 3:      return true;      break;    }    return false;  }  /// Initialize dof map for mesh (return true iff init_cell() is needed)  virtual bool init_mesh(const ufc::mesh& m)  {    __global_dimension = 4*m.num_entities[3];    return false;  }  /// Initialize dof map for given cell  virtual void init_cell(const ufc::mesh& m,                         const ufc::cell& c)  {    // Do nothing  }  /// Finish initialization of dof map for cells  virtual void init_cell_finalize()  {    // Do nothing  }  /// Return the dimension of the global finite element function space  virtual unsigned int global_dimension() const  {    return __global_dimension;  }  /// Return the dimension of the local finite element function space  virtual unsigned int local_dimension() const  {    return 4;  }  // Return the geometric dimension of the coordinates this dof map provides  virtual unsigned int geometric_dimension() const  {    return 3;  }  /// Return the number of dofs on each cell facet  virtual unsigned int num_facet_dofs() const  {    return 0;  }  /// Return the number of dofs associated with each cell entity of dimension d  virtual unsigned int num_entity_dofs(unsigned int d) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Tabulate the local-to-global mapping of dofs on a cell  virtual void tabulate_dofs(unsigned int* dofs,                             const ufc::mesh& m,                             const ufc::cell& c) const  {    dofs[0] = 4*c.entity_indices[3][0];    dofs[1] = 4*c.entity_indices[3][0] + 1;    dofs[2] = 4*c.entity_indices[3][0] + 2;    dofs[3] = 4*c.entity_indices[3][0] + 3;  }  /// Tabulate the local-to-local mapping from facet dofs to cell dofs  virtual void tabulate_facet_dofs(unsigned int* dofs,                                   unsigned int facet) const  {    switch ( facet )    {    case 0:            break;    case 1:            break;    case 2:            break;    case 3:            break;    }  }  /// Tabulate the local-to-local mapping of dofs on entity (d, i)  virtual void tabulate_entity_dofs(unsigned int* dofs,                                    unsigned int d, unsigned int i) const  {    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");  }  /// Tabulate the coordinates of all dofs on a cell  virtual void tabulate_coordinates(double** coordinates,                                    const ufc::cell& c) const  {    const double * const * x = c.coordinates;    coordinates[0][0] = x[0][0];    coordinates[0][1] = x[0][1];    coordinates[0][2] = x[0][2];    coordinates[1][0] = x[1][0];    coordinates[1][1] = x[1][1];    coordinates[1][2] = x[1][2];    coordinates[2][0] = x[2][0];    coordinates[2][1] = x[2][1];    coordinates[2][2] = x[2][2];    coordinates[3][0] = x[3][0];    coordinates[3][1] = x[3][1];    coordinates[3][2] = x[3][2];  }  /// Return the number of sub dof maps (for a mixed element)  virtual unsigned int num_sub_dof_maps() const  {    return 1;  }  /// Create a new dof_map for sub dof map i (for a mixed element)  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const  {    return new UFC_PoissonBilinearForm_dof_map_0();  }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_PoissonBilinearForm_dof_map_1: public ufc::dof_map{private:  unsigned int __global_dimension;public:  /// Constructor  UFC_PoissonBilinearForm_dof_map_1() : ufc::dof_map()  {    __global_dimension = 0;  }  /// Destructor  virtual ~UFC_PoissonBilinearForm_dof_map_1()  {    // Do nothing  }  /// Return a string identifying the dof map  virtual const char* signature() const  {    return "FFC dof map for Discontinuous Lagrange finite element of degree 1 on a tetrahedron";  }  /// Return true iff mesh entities of topological dimension d are needed  virtual bool needs_mesh_entities(unsigned int d) const  {    switch ( d )    {    case 0:      return false;      break;    case 1:      return false;      break;    case 2:      return false;      break;    case 3:      return true;      break;    }    return false;  }  /// Initialize dof map for mesh (return true iff init_cell() is needed)  virtual bool init_mesh(const ufc::mesh& m)  {    __global_dimension = 4*m.num_entities[3];    return false;  }  /// Initialize dof map for given cell  virtual void init_cell(const ufc::mesh& m,                         const ufc::cell& c)  {    // Do nothing  }  /// Finish initialization of dof map for cells  virtual void init_cell_finalize()  {    // Do nothing  }  /// Return the dimension of the global finite element function space  virtual unsigned int global_dimension() const  {    return __global_dimension;  }  /// Return the dimension of the local finite element function space  virtual unsigned int local_dimension

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -