📄 projection.h
字号:
{ combinations[j] = new unsigned int [n]; for (unsigned int k = 0; k < n; k++) combinations[j][k] = 0; } // Generate combinations of derivatives for (unsigned int row = 1; row < num_derivatives; row++) { for (unsigned int num = 0; num < row; num++) { for (unsigned int col = n-1; col+1 > 0; col--) { if (combinations[row][col] + 1 > 2) combinations[row][col] = 0; else { combinations[row][col] += 1; break; } } } } // Compute inverse of Jacobian const double Jinv[3][3] ={{d00 / detJ, d10 / detJ, d20 / detJ}, {d01 / detJ, d11 / detJ, d21 / detJ}, {d02 / detJ, d12 / detJ, d22 / detJ}}; // Declare transformation matrix // Declare pointer to two dimensional array and initialise double **transform = new double *[num_derivatives]; for (unsigned int j = 0; j < num_derivatives; j++) { transform[j] = new double [num_derivatives]; for (unsigned int k = 0; k < num_derivatives; k++) transform[j][k] = 1; } // Construct transformation matrix for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { for (unsigned int k = 0; k < n; k++) transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; } } // Reset values for (unsigned int j = 0; j < 1*num_derivatives; j++) values[j] = 0; // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings const double scalings_y_0 = 1; const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y); const double scalings_y_2 = scalings_y_1*(0.5 - 0.5*y); const double scalings_z_0 = 1; const double scalings_z_1 = scalings_z_0*(0.5 - 0.5*z); const double scalings_z_2 = scalings_z_1*(0.5 - 0.5*z); // Compute psitilde_a const double psitilde_a_0 = 1; const double psitilde_a_1 = x; const double psitilde_a_2 = 1.5*x*psitilde_a_1 - 0.5*psitilde_a_0; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; const double psitilde_bs_0_1 = 1.5*y + 0.5; const double psitilde_bs_0_2 = 0.111111111111111*psitilde_bs_0_1 + 1.66666666666667*y*psitilde_bs_0_1 - 0.555555555555556*psitilde_bs_0_0; const double psitilde_bs_1_0 = 1; const double psitilde_bs_1_1 = 2.5*y + 1.5; const double psitilde_bs_2_0 = 1; // Compute psitilde_cs const double psitilde_cs_00_0 = 1; const double psitilde_cs_00_1 = 2*z + 1; const double psitilde_cs_00_2 = 0.3125*psitilde_cs_00_1 + 1.875*z*psitilde_cs_00_1 - 0.5625*psitilde_cs_00_0; const double psitilde_cs_01_0 = 1; const double psitilde_cs_01_1 = 3*z + 2; const double psitilde_cs_02_0 = 1; const double psitilde_cs_10_0 = 1; const double psitilde_cs_10_1 = 3*z + 2; const double psitilde_cs_11_0 = 1; const double psitilde_cs_20_0 = 1; // Compute basisvalues const double basisvalue0 = 0.866025403784439*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_0; const double basisvalue1 = 2.73861278752583*psitilde_a_1*scalings_y_1*psitilde_bs_1_0*scalings_z_1*psitilde_cs_10_0; const double basisvalue2 = 1.58113883008419*psitilde_a_0*scalings_y_0*psitilde_bs_0_1*scalings_z_1*psitilde_cs_01_0; const double basisvalue3 = 1.11803398874989*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_1; const double basisvalue4 = 5.1234753829798*psitilde_a_2*scalings_y_2*psitilde_bs_2_0*scalings_z_2*psitilde_cs_20_0; const double basisvalue5 = 3.96862696659689*psitilde_a_1*scalings_y_1*psitilde_bs_1_1*scalings_z_2*psitilde_cs_11_0; const double basisvalue6 = 2.29128784747792*psitilde_a_0*scalings_y_0*psitilde_bs_0_2*scalings_z_2*psitilde_cs_02_0; const double basisvalue7 = 3.24037034920393*psitilde_a_1*scalings_y_1*psitilde_bs_1_0*scalings_z_1*psitilde_cs_10_1; const double basisvalue8 = 1.87082869338697*psitilde_a_0*scalings_y_0*psitilde_bs_0_1*scalings_z_1*psitilde_cs_01_1; const double basisvalue9 = 1.3228756555323*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_2; // Table(s) of coefficients const static double coefficients0[10][10] = \ {{-0.0577350269189625, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0290957186981323, 0.0411475599898912, 0.0237565548366599, 0.0167984210226323}, {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499976, 0.0650600048632355, -0.050395263067897, 0.0290957186981323, -0.0411475599898912, 0.0237565548366599, 0.0167984210226323}, {-0.0577350269189626, 0, 0.0702728368926306, -0.0248451997499976, 0, 0, 0.087287156094397, 0, -0.0475131096733199, 0.0167984210226323}, {-0.0577350269189626, 0, 0, 0.074535599249993, 0, 0, 0, 0, 0, 0.100790526135794}, {0.23094010767585, 0, 0.140545673785261, 0.0993807989999906, 0, 0, 0, 0, 0.1187827741833, -0.0671936840905293}, {0.23094010767585, 0.121716123890037, -0.0702728368926306, 0.0993807989999907, 0, 0, 0, 0.102868899974728, -0.0593913870916499, -0.0671936840905293}, {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999907, 0, 0.100790526135794, -0.087287156094397, -0.0205737799949456, -0.01187827741833, 0.0167984210226323}, {0.23094010767585, -0.121716123890037, -0.0702728368926307, 0.0993807989999906, 0, 0, 0, -0.102868899974728, -0.0593913870916499, -0.0671936840905293}, {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999907, 0, -0.100790526135794, -0.0872871560943969, 0.0205737799949456, -0.01187827741833, 0.0167984210226323}, {0.23094010767585, 0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0, 0.0290957186981323, 0, 0.02375655483666, 0.0167984210226323}}; // Interesting (new) part // Tables of derivatives of the polynomial base (transpose) const static double dmats0[10][10] = \ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {6.32455532033676, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 11.2249721603218, 0, 0, 0, 0, 0, 0, 0, 0}, {4.58257569495584, 0, 8.36660026534076, -1.18321595661992, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {3.74165738677394, 0, 0, 8.69482604771366, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; const static double dmats1[10][10] = \ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {3.16227766016838, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {5.47722557505166, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0, 0, 0, 0, 0, 0}, {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309962, 0, 0, 0, 0, 0, 0}, {-2.64575131106459, 0, 9.66091783079296, 0.683130051063974, 0, 0, 0, 0, 0, 0}, {1.87082869338697, 0, 0, 4.34741302385683, 0, 0, 0, 0, 0, 0}, {3.24037034920393, 0, 0, 7.52994023880668, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; const static double dmats2[10][10] = \ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {3.16227766016838, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1.82574185835055, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {5.16397779494322, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0, 0, 0, 0, 0, 0}, {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0, 0, 0, 0, 0, 0}, {1.32287565553229, 0, 3.86436713231718, -0.341565025531986, 0, 0, 0, 0, 0, 0}, {1.87082869338697, 7.09929573971954, 0, 4.34741302385683, 0, 0, 0, 0, 0, 0}, {1.08012344973464, 0, 7.09929573971954, 2.50998007960223, 0, 0, 0, 0, 0, 0}, {-3.81881307912986, 0, 0, 8.87411967464942, 0, 0, 0, 0, 0, 0}}; // Compute reference derivatives // Declare pointer to array of derivatives on FIAT element double *derivatives = new double [num_derivatives]; // Declare coefficients double coeff0_0 = 0; double coeff0_1 = 0; double coeff0_2 = 0; double coeff0_3 = 0; double coeff0_4 = 0; double coeff0_5 = 0; double coeff0_6 = 0; double coeff0_7 = 0; double coeff0_8 = 0; double coeff0_9 = 0; // Declare new coefficients double new_coeff0_0 = 0; double new_coeff0_1 = 0; double new_coeff0_2 = 0; double new_coeff0_3 = 0; double new_coeff0_4 = 0; double new_coeff0_5 = 0; double new_coeff0_6 = 0; double new_coeff0_7 = 0; double new_coeff0_8 = 0; double new_coeff0_9 = 0; // Loop possible derivatives for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++) { // Get values from coefficients array new_coeff0_0 = coefficients0[dof][0]; new_coeff0_1 = coefficients0[dof][1]; new_coeff0_2 = coefficients0[dof][2]; new_coeff0_3 = coefficients0[dof][3]; new_coeff0_4 = coefficients0[dof][4]; new_coeff0_5 = coefficients0[dof][5]; new_coeff0_6 = coefficients0[dof][6]; new_coeff0_7 = coefficients0[dof][7]; new_coeff0_8 = coefficients0[dof][8]; new_coeff0_9 = coefficients0[dof][9]; // Loop derivative order for (unsigned int j = 0; j < n; j++) { // Update old coefficients coeff0_0 = new_coeff0_0; coeff0_1 = new_coeff0_1; coeff0_2 = new_coeff0_2; coeff0_3 = new_coeff0_3; coeff0_4 = new_coeff0_4; coeff0_5 = new_coeff0_5; coeff0_6 = new_coeff0_6; coeff0_7 = new_coeff0_7; coeff0_8 = new_coeff0_8; coeff0_9 = new_coeff0_9; if(combinations[deriv_num][j] == 0) { new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0] + coeff0_3*dmats0[3][0] + coeff0_4*dmats0[4][0] + coeff0_5*dmats0[5][0] + coeff0_6*dmats0[6][0] + coeff0_7*dmats0[7][0] + coeff0_8*dmats0[8][0] + coeff0_9*dmats0[9][0]; new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1] + coeff0_3*dmats0[3][1] + coeff0_4*dmats0[4][1] + coeff0_5*dmats0[5][1] + coeff0_6*dmats0[6][1] + coeff0_7*dmats0[7][1] + coeff0_8*dmats0[8][1] + coeff0_9*dmats0[9][1]; new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2] + coeff0_3*dmats0[3][2] + coeff0_4*dmats0[4][2] + coeff0_5*dmats0[5][2] + coeff0_6*dmats0[6][2] + coeff0_7*dmats0[7][2] + coeff0_8*dmats0[8][2] + coeff0_9*dmats0[9][2]; new_coeff0_3 = coeff0_0*dmats0[0][3] + coeff0_1*dmats0[1][3] + coeff0_2*dmats0[2][3] + coeff0_3*dmats0[3][3] + coeff0_4*dmats0[4][3] + coeff0_5*dmats0[5][3] + coeff0_6*dmats0[6][3] + coeff0_7*dmats0[7][3] + coeff0_8*dmats0[8][3] + coeff0_9*dmats0[9][3]; new_coeff0_4 = coeff0_0*dmats0[0][4] + coeff0_1*dmats0[1][4] + coeff0_2*dmats0[2][4] + coeff0_3*dmats0[3][4] + coeff0_4*dmats0[4][4] + coeff0_5*dmats0[5][4] + coeff0_6*dmats0[6][4] + coeff0_7*dmats0[7][4] + coeff0_8*dmats0[8][4] + coeff0_9*dmats0[9][4]; new_coeff0_5 = coeff0_0*dmats0[0][5] + coeff0_1*dmats0[1][5] + coeff0_2*dmats0[2][5] + coeff0_3*dmats0[3][5] + coeff0_4*dmats0[4][5] + coeff0_5*dmats0[5][5] + coeff0_6*dmats0[6][5] + coeff0_7*dmats0[7][5] + coeff0_8*dmats0[8][5] + coeff0_9*dmats0[9][5]; new_coeff0_6 = coeff0_0*dmats0[0][6] + coeff0_1*dmats0[1][6] + coeff0_2*dmats0[2][6] + coeff0_3*dmats0[3][6] + coeff0_4*dmats0[4][6] + coeff0_5*dmats0[5][6] + coeff0_6*dmats0[6][6] + coeff0_7*dmats0[7][6] + coeff0_8*dmats0[8][6] + coeff0_9*dmats0[9][6]; new_coeff0_7 = coeff0_0*dmats0[0][7] + coeff0_1*dmats0[1][7] + coeff0_2*dmats0[2][7] + coeff0_3*dmats0[3][7] + coeff0_4*dmats0[4][7] + coeff0_5*dmats0[5][7] + coeff0_6*dmats0[6][7] + coeff0_7*dmats0[7][7] + coeff0_8*dmats0[8][7] + coeff0_9*dmats0[9][7]; new_coeff0_8 = coeff0_0*dmats0[0][8] + coeff0_1*dmats0[1][8] + coeff0_2*dmats0[2][8] + coeff0_3*dmats0[3][8] + coeff0_4*dmats0[4][8] + coeff0_5*dmats0[5][8] + coeff0_6*dmats0[6][8] + coeff0_7*dmats0[7][8] + coeff0_8*dmats0[8][8] + coeff0_9*dmats0[9][8]; new_coeff0_9 = coeff0_0*dmats0[0][9] + coeff0_1*dmats0[1][9] + coeff0_2*dmats0[2][9] + coeff0_3*dmats0[3][9] + coeff0_4*dmats0[4][9] + coeff0_5*dmats0[5][9] + coeff0_6*dmats0[6][9] + coeff0_7*dmats0[7][9] + coeff0_8*dmats0[8][9] + coeff0_9*dmats0[9][9]; } if(combinations[deriv_num][j] == 1) { new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0] + coeff0_3*dmats1[3][0] + coeff0_4*dmats1[4][0] + coeff0_5*dmats1[5][0] + coeff0_6*dmats1[6][0] + coeff0_7*dmats1[7][0] + coeff0_8*dmats1[8][0] + coeff0_9*dmats1[9][0]; new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1] + coeff0_3*dmats1[3][1] + coeff0_4*dmats1[4][1] + coeff0_5*dmats1[5][1] + coeff0_6*dmats1[6][1] + coeff0_7*dmats1[7][1] + coeff0_8*dmats1[8][1] + coeff0_9*dmats1[9][1]; new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2] + coeff0_3*dmats1[3][2] + coeff0_4*dmats1[4][2] + coeff0_5*dmats1[5][2] + coeff0_6*dmats1[6][2] + coeff0_7*dmats1[7][2] + coeff0_8*dmats1[8][2] + coeff0_9*dmats1[9][2]; new_coeff0_3 = coeff0_0*dmats1[0][3] + coeff0_1*dmats1[1][3] + coeff0_2*dmats1[2][3] + coeff0_3*dmats1[3][3] + coeff0_4*dmats1[4][3] + coeff0_5*dmats1[5][3] + coeff0_6*dmats1[6][3] + coeff0_7*dmats1[7][3] + coeff0_8*dmats1[8][3] + coeff0_9*dmats1[9][3]; new_coeff0_4 = coeff0_0*dmats1[0][4] + coeff0_1*dmats1[1][4] + coeff0_2*dmats1[2][4] + coeff0_3*dmats1[3][4] + coeff0_4*dmats1[4][4] + coeff0_5*dmats1[5][4] + coeff0_6*dmats1[6][4] + coeff0_7*dmats1[7][4] + coeff0_8*dmats1[8][4] + coeff0_9*dmats1[9][4]; new_coeff0_5 = coeff0_0*dmats1[0][5] + coeff0_1*dmats1[1][5] + coeff0_2*dmats1[2][5] + coeff0_3*dmats1[3][5] + coeff0_4*dmats1[4][5] + coeff0_5*dmats1[5][5] + coeff0_6*dmats1[6][5] + coeff0_7*dmats1[7][5] + coeff0_8*dmats1[8][5] + coeff0_9*dmats1[9][5]; new_coeff0_6 = coeff0_0*dmats1[0][6] + coeff0_1*dmats1[1][6] + coeff0_2*dmats1[2][6] + coeff0_3*dmats1[3][6] + coeff0_4*dmats1[4][6] + coeff0_5*dmats1[5][6] + coeff0_6*dmats1[6][6] + coeff0_7*dmats1[7][6] + coeff0_8*dmats1[8][6] + coeff0_9*dmats1[9][6]; new_coeff0_7 = coeff0_0*dmats1[0][7] + coeff0_1*dmats1[1][7] + coeff0_2*dmats1[2][7] + coeff0_3*dmats1[3][7] + coeff0_4*dmats1[4][7] + coeff0_5*dmats1[5][7] + coeff0_6*dmats1[6][7] + coeff0_7*dmats1[7][7] + coeff0_8*dmats1[8][7] + coeff0_9*dmats1[9][7]; new_coeff0_8 = coeff0_0*dmats1[0][8] + coeff0_1*dmats1[1][8] + coeff0_2*dmats1[2][8] + coeff0_3*dmats1[3][8] + coeff0_4*dmats1[4][8] + coeff0_5*dmats1[5][8] + coeff0_6*
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -