📄 createnetwork.java
字号:
package org.encog.neural.networks;
import org.encog.matrix.Matrix;
import org.encog.neural.networks.BasicNetwork;
import org.encog.neural.networks.layers.FeedforwardLayer;
public class CreateNetwork {
public static BasicNetwork createXORNetworkUntrained()
{
// random matrix data. However, it provides a constant starting point
// for the unit tests.
double matrixData1[][] =
{
{-0.8026145065833352, 0.48730020258365925, -0.29670931365567577 },
{0.07689650585681851, -0.513969748944711, 0.11858304184009771},
{-0.4485719795825909, 0.15435275595196507, 0.17655902338449336} };
double matrixData2[][] =
{
{0.024694322443027827},
{-0.0447166248226063},
{0.9000418882323729},
{0.38999333206070275} };
Matrix matrix1 = new Matrix(matrixData1);
Matrix matrix2 = new Matrix(matrixData2);
FeedforwardLayer layer1,layer2;
BasicNetwork network = new BasicNetwork();
network.addLayer(layer1 = new FeedforwardLayer(2));
network.addLayer(layer2 = new FeedforwardLayer(3));
network.addLayer(new FeedforwardLayer(1));
layer1.setMatrix(matrix1);
layer2.setMatrix(matrix2);
return network;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -