📄 xor.java
字号:
package org.encog.neural.networks;import junit.framework.TestCase;import org.encog.neural.data.NeuralData;import org.encog.neural.data.NeuralDataPair;import org.encog.neural.data.NeuralDataSet;import org.encog.neural.data.basic.BasicNeuralData;import org.encog.neural.networks.BasicNetwork;import org.encog.neural.networks.layers.FeedforwardLayer;public class XOR { public static double XOR_INPUT[][] = { { 0.0, 0.0 }, { 1.0, 0.0 }, { 0.0, 1.0 }, { 1.0, 1.0 } }; public static double XOR_IDEAL[][] = { { 0.0 }, { 1.0 }, { 1.0 }, { 0.0 } }; public static boolean verifyXOR(BasicNetwork network,double tolerance) { for(int trainingSet=0;trainingSet<XOR.XOR_IDEAL.length;trainingSet++) { NeuralData actual = network.compute(new BasicNeuralData(XOR.XOR_INPUT[trainingSet])); for(int i=0;i<XOR.XOR_IDEAL[0].length;i++) { double diff = Math.abs(actual.getData(i)-XOR.XOR_IDEAL[trainingSet][i]); if( diff>tolerance ) return false; } } return true; } public static void testXORDataSet(NeuralDataSet set) { int row = 0; for(NeuralDataPair item: set) { for(int i=0;i<XOR.XOR_INPUT[0].length;i++) { TestCase.assertEquals(item.getInput().getData(i), XOR.XOR_INPUT[row][i]); } for(int i=0;i<XOR.XOR_IDEAL[0].length;i++) { TestCase.assertEquals(item.getIdeal().getData(i), XOR.XOR_IDEAL[row][i]); } row++; } } public static BasicNetwork createThreeLayerNet() { BasicNetwork network = new BasicNetwork(); network.addLayer(new FeedforwardLayer(2)); network.addLayer(new FeedforwardLayer(3)); network.addLayer(new FeedforwardLayer(1)); network.reset(); return network; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -