⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 errorcalculation.java

📁 VHDL制作的ann的code
💻 JAVA
字号:
/* * Encog Neural Network and Bot Library for Java v1.x * http://www.heatonresearch.com/encog/ * http://code.google.com/p/encog-java/ *  * Copyright 2008, Heaton Research Inc., and individual contributors. * See the copyright.txt in the distribution for a full listing of  * individual contributors. * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this software; if not, write to the Free * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA, or see the FSF site: http://www.fsf.org. */package org.encog.util;import org.encog.neural.data.NeuralData;/** * ErrorCalculation: An implementation of root mean square (RMS) error * calculation. This class is used by nearly every neural network in this book * to calculate error. */public class ErrorCalculation {	/**	 * The overall error.	 */	private double globalError;	/**	 * The size of a set.	 */	private int setSize;	/**	 * Returns the root mean square error for a complete training set.	 * 	 * @return The current error for the neural network.	 */	public double calculateRMS() {		final double err = Math.sqrt(this.globalError / this.setSize);		return err;	}	/**	 * Reset the error accumulation to zero.	 */	public void reset() {		this.globalError = 0;		this.setSize = 0;	}	/**	 * Called to update for each number that should be checked.	 * 	 * @param actual	 *            The actual number.	 * @param ideal	 *            The ideal number.	 */	public void updateError(final double[] actual, final double[] ideal) {		for (int i = 0; i < actual.length; i++) {			final double delta = ideal[i] - actual[i];			this.globalError += delta * delta;			this.setSize += ideal.length;		}	}	/**	 * Update the error.	 * 	 * @param actual	 *            The actual values.	 * @param ideal	 *            The ideal values.	 */	public void updateError(final NeuralData actual, final NeuralData ideal) {		updateError(actual.getData(), ideal.getData());	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -