⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 basiclayerpersistor.java

📁 VHDL制作的ann的code
💻 JAVA
字号:
/* * Encog Neural Network and Bot Library for Java v1.x * http://www.heatonresearch.com/encog/ * http://code.google.com/p/encog-java/ *  * Copyright 2008, Heaton Research Inc., and individual contributors. * See the copyright.txt in the distribution for a full listing of  * individual contributors. * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this software; if not, write to the Free * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA, or see the FSF site: http://www.fsf.org. */package org.encog.neural.persist.persistors;import javax.xml.transform.sax.TransformerHandler;import org.encog.matrix.Matrix;import org.encog.neural.NeuralNetworkError;import org.encog.neural.networks.layers.BasicLayer;import org.encog.neural.persist.EncogPersistedCollection;import org.encog.neural.persist.EncogPersistedObject;import org.encog.neural.persist.Persistor;import org.encog.util.XMLUtil;import org.w3c.dom.Element;import org.xml.sax.SAXException;import org.xml.sax.helpers.AttributesImpl;/** * Persistence methods for the basic neural layer. *  * @author jheaton */public class BasicLayerPersistor implements Persistor {	/**	 * Load from the specified node.	 * 	 * @param layerNode	 *            The node to load from.	 * @return The EncogPersistedObject that was loaded.	 */	public EncogPersistedObject load(final Element layerNode) {		final String str = layerNode.getAttribute("neuronCount");		final int neuronCount = Integer.parseInt(str);		final String name = layerNode.getAttribute("name");		final String description = layerNode.getAttribute("description");		final BasicLayer layer = new BasicLayer(neuronCount);		layer.setName(name);		layer.setDescription(description);		final Element matrixElement = XMLUtil.findElement(layerNode,				"weightMatrix");		if (matrixElement != null) {			final Element e = XMLUtil.findElement(matrixElement, "Matrix");			final Persistor persistor = EncogPersistedCollection					.createPersistor("Matrix");			final Matrix matrix = (Matrix) persistor.load(e);			layer.setMatrix(matrix);		}		return layer;	}	/**	 * Save the specified object.	 * 	 * @param object	 *            The object to save.	 * @param hd	 *            The XML object.	 */	public void save(final EncogPersistedObject object,			final TransformerHandler hd) {		try {			final BasicLayer layer = (BasicLayer) object;			final AttributesImpl atts = EncogPersistedCollection					.createAttributes(object);			EncogPersistedCollection.addAttribute(atts, "neuronCount", ""					+ layer.getNeuronCount());			hd.startElement("", "", layer.getClass().getSimpleName(), atts);			atts.clear();			if (layer.hasMatrix()) {				final Persistor persistor = EncogPersistedCollection						.createPersistor(layer.getMatrix().getClass()								.getSimpleName());				atts.clear();				hd.startElement("", "", "weightMatrix", atts);				persistor.save(layer.getMatrix(), hd);				hd.endElement("", "", "weightMatrix");			}			hd.endElement("", "", layer.getClass().getSimpleName());		} catch (final SAXException e) {			throw new NeuralNetworkError(e);		}	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -