📄 basiclayerpersistor.java
字号:
/* * Encog Neural Network and Bot Library for Java v1.x * http://www.heatonresearch.com/encog/ * http://code.google.com/p/encog-java/ * * Copyright 2008, Heaton Research Inc., and individual contributors. * See the copyright.txt in the distribution for a full listing of * individual contributors. * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this software; if not, write to the Free * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA, or see the FSF site: http://www.fsf.org. */package org.encog.neural.persist.persistors;import javax.xml.transform.sax.TransformerHandler;import org.encog.matrix.Matrix;import org.encog.neural.NeuralNetworkError;import org.encog.neural.networks.layers.BasicLayer;import org.encog.neural.persist.EncogPersistedCollection;import org.encog.neural.persist.EncogPersistedObject;import org.encog.neural.persist.Persistor;import org.encog.util.XMLUtil;import org.w3c.dom.Element;import org.xml.sax.SAXException;import org.xml.sax.helpers.AttributesImpl;/** * Persistence methods for the basic neural layer. * * @author jheaton */public class BasicLayerPersistor implements Persistor { /** * Load from the specified node. * * @param layerNode * The node to load from. * @return The EncogPersistedObject that was loaded. */ public EncogPersistedObject load(final Element layerNode) { final String str = layerNode.getAttribute("neuronCount"); final int neuronCount = Integer.parseInt(str); final String name = layerNode.getAttribute("name"); final String description = layerNode.getAttribute("description"); final BasicLayer layer = new BasicLayer(neuronCount); layer.setName(name); layer.setDescription(description); final Element matrixElement = XMLUtil.findElement(layerNode, "weightMatrix"); if (matrixElement != null) { final Element e = XMLUtil.findElement(matrixElement, "Matrix"); final Persistor persistor = EncogPersistedCollection .createPersistor("Matrix"); final Matrix matrix = (Matrix) persistor.load(e); layer.setMatrix(matrix); } return layer; } /** * Save the specified object. * * @param object * The object to save. * @param hd * The XML object. */ public void save(final EncogPersistedObject object, final TransformerHandler hd) { try { final BasicLayer layer = (BasicLayer) object; final AttributesImpl atts = EncogPersistedCollection .createAttributes(object); EncogPersistedCollection.addAttribute(atts, "neuronCount", "" + layer.getNeuronCount()); hd.startElement("", "", layer.getClass().getSimpleName(), atts); atts.clear(); if (layer.hasMatrix()) { final Persistor persistor = EncogPersistedCollection .createPersistor(layer.getMatrix().getClass() .getSimpleName()); atts.clear(); hd.startElement("", "", "weightMatrix", atts); persistor.save(layer.getMatrix(), hd); hd.endElement("", "", "weightMatrix"); } hd.endElement("", "", layer.getClass().getSimpleName()); } catch (final SAXException e) { throw new NeuralNetworkError(e); } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -