📄 tspchromosome.java
字号:
/* * Encog Neural Network and Bot Library for Java * http://www.heatonresearch.com/encog/ * http://code.google.com/p/encog-java/ * * Copyright 2008, Heaton Research Inc., and individual contributors. * See the copyright.txt in the distribution for a full listing of * individual contributors. * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this software; if not, write to the Free * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA, or see the FSF site: http://www.fsf.org. */package org.encog.examples.nonlinear.tsp.genetic;import org.encog.examples.nonlinear.tsp.City;import org.encog.neural.NeuralNetworkError;import org.encog.solve.genetic.Chromosome;/** * Chapter 6: Training using a Genetic Algorithm * * TSPChromosome: A chromosome that is used to attempt to solve the * traveling salesman problem. A chromosome is a list of cities. * * @author Jeff Heaton * @version 2.1 */public class TSPChromosome extends Chromosome<Integer> { protected City cities[]; TSPChromosome(final TSPGeneticAlgorithm owner, final City cities[]) { this.setGeneticAlgorithm(owner); this.cities = cities; final Integer genes[] = new Integer[this.cities.length]; final boolean taken[] = new boolean[cities.length]; for (int i = 0; i < genes.length; i++) { taken[i] = false; } for (int i = 0; i < genes.length - 1; i++) { int icandidate; do { icandidate = (int) (Math.random() * genes.length); } while (taken[icandidate]); genes[i] = icandidate; taken[icandidate] = true; if (i == genes.length - 2) { icandidate = 0; while (taken[icandidate]) { icandidate++; } genes[i + 1] = icandidate; } } setGenes(genes); calculateCost(); } @Override public void calculateCost() throws NeuralNetworkError { double cost = 0.0; for (int i = 0; i < this.cities.length - 1; i++) { final double dist = this.cities[getGene(i)] .proximity(this.cities[getGene(i + 1)]); cost += dist; } setCost(cost); } @Override public void mutate() { final int length = this.getGenes().length; final int iswap1 = (int) (Math.random() * length); final int iswap2 = (int) (Math.random() * length); final Integer temp = getGene(iswap1); setGene(iswap1, getGene(iswap2)); setGene(iswap2, temp); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -