📄 main.c
字号:
/*************************************************************************
*
* Used with ICCARM and AARM.
*
* (c) Copyright IAR Systems 2007
*
* File name : main.c
* Description : Main module
*
* History :
* 1. Date : September 14, 2007
* Author : Stanimir Bonev
* Description : Create
*
* This example project shows how to use the IAR Embedded Workbench for ARM
* to develop code for the IAR LPC-2468 board.
* It implements USB CDC (Communication Device Class) device and install
* it like a Virtual COM port. The UART1 is used for physical implementation
* of the RS232 port.
*
* Jumpers:
* J5 - depending of power source
* ISP - unfilled
* nRESET - unfilled
* EINT0 - filled
*
* Note:
* After power-up the controller get clock from internal RC oscillator that
* is unstable and may fail with J-Link auto detect, therefore adaptive clocking
* should always be used. The adaptive clock can be select from menu:
* Project->Options..., section Debugger->J-Link/J-Trace JTAG Speed - Adaptive.
*
* $Revision: 18137 $
**************************************************************************/
#include "includes.h"
/*************************************************************************
* Function Name: fiq_handler
* Parameters: none
*
* Return: none
*
* Description: FIQ handler
*
*************************************************************************/
__fiq __arm void FIQ_Handler (void)
{
while(1);
}
/*************************************************************************
* Function Name: irq_handler
* Parameters: none
*
* Return: none
*
* Description: IRQ handler
*
*************************************************************************/
__irq __arm void IRQ_Handler (void)
{
void (*interrupt_function)();
unsigned int vector;
vector = VICADDRESS; // Get interrupt vector.
interrupt_function = (void(*)())vector;
if(interrupt_function != NULL)
{
interrupt_function(); // Call vectored interrupt function.
}
else
{
VICADDRESS = 0; // Clear interrupt in VIC.
}
}
/*************************************************************************
* Function Name: VIC_Init
* Parameters: void
* Return: void
*
* Description: Initialize VIC
*
*************************************************************************/
void VIC_Init(void)
{
volatile unsigned long * pVecAdd, *pVecCntl;
int i;
// Assign all interrupt channels to IRQ
VICINTSELECT = 0;
// Disable all interrupts
VICINTENCLEAR = 0xFFFFFFFF;
// Clear all software interrupts
VICSOFTINTCLEAR = 0xFFFFFFFF;
// VIC registers can be accessed in User or privileged mode
VICPROTECTION = 0;
// Clear interrupt
VICADDRESS = 0;
// Clear address of the Interrupt Service routine (ISR) for vectored IRQs
// and disable all vectored IRQ slots
for(i = 0, pVecCntl = &VICVECTPRIORITY0, pVecAdd = &VICVECTADDR0; i < 32; ++i)
{
*pVecCntl++ = *pVecAdd++ = 0;
}
}
/*************************************************************************
* Function Name: VIC_SetVectoredIRQ
* Parameters: void(*pIRQSub)()
* unsigned int VicIrqSlot
* unsigned int VicIntSouce
*
* Return: void
*
* Description: Init vectored interrupts
*
*************************************************************************/
void VIC_SetVectoredIRQ(void(*pIRQSub)(), unsigned int Priority,
unsigned int VicIntSource)
{
unsigned long volatile *pReg;
// load base address of vectored address registers
pReg = &VICVECTADDR0;
// Set Address of callback function to corresponding Slot
*(pReg+VicIntSource) = (unsigned long)pIRQSub;
// load base address of ctrl registers
pReg = &VICVECTPRIORITY0;
// Set source channel and enable the slot
*(pReg+VicIntSource) = Priority;
// Clear FIQ select bit
VICINTSELECT &= ~(1<<VicIntSource);
}
/*************************************************************************
* Function Name: InitClock
* Parameters: void
* Return: void
*
* Description: Initialize PLL and clocks' dividers. Hclk - 288MHz,
* Cclk- 48MHz, Usbclk - 48MHz
*
*************************************************************************/
void InitClock(void)
{
// 1. Init OSC
SCS_bit.OSCRANGE = 0;
SCS_bit.OSCEN = 1;
// 2. Wait for OSC ready
while(!SCS_bit.OSCSTAT);
// 3. Disconnect PLL
PLLCON_bit.PLLC = 0;
PLLFEED = 0xAA;
PLLFEED = 0x55;
// 4. Disable PLL
PLLCON_bit.PLLE = 0;
PLLFEED = 0xAA;
PLLFEED = 0x55;
// 5. Select source clock for PLL
CLKSRCSEL_bit.CLKSRC = 1; // Selects the main oscillator as a PLL clock source.
// 6. Set PLL settings 288 MHz
PLLCFG_bit.MSEL = 24-1;
PLLCFG_bit.NSEL = 2-1;
PLLFEED = 0xAA;
PLLFEED = 0x55;
// 7. Enable PLL
PLLCON_bit.PLLE = 1;
PLLFEED = 0xAA;
PLLFEED = 0x55;
// 8. Wait for the PLL to achieve lock
while(!PLLSTAT_bit.PLOCK);
// 9. Set clk divider settings
CCLKCFG = 6-1; // 1/6 Fpll - 48 MHz, Regarding Errata Flash.1
USBCLKCFG = 6-1; // 1/6 Fpll - 48 MHz
PCLKSEL0 = PCLKSEL1 = 0; // other peripherals - 12MHz (Fcclk/4)
// 10. Connect the PLL
PLLCON_bit.PLLC = 1;
PLLFEED = 0xAA;
PLLFEED = 0x55;
}
/*************************************************************************
* Function Name: SYS_GetFsclk
* Parameters: none
* Return: Int32U
*
* Description: return Sclk [Hz]
*
*************************************************************************/
Int32U SYS_GetFsclk(void)
{
Int32U Mul = 1, Div = 1, Osc, Fsclk;
if(PLLSTAT_bit.PLLC)
{
// when PLL is connected
Mul = PLLSTAT_bit.MSEL + 1;
Div = PLLSTAT_bit.NSEL + 1;
}
// Find clk source
switch(CLKSRCSEL_bit.CLKSRC)
{
case 0:
Osc = I_RC_OSC_FREQ;
break;
case 1:
Osc = MAIN_OSC_FREQ;
break;
case 2:
Osc = RTC_OSC_FREQ;
break;
default:
Osc = 0;
}
// Calculate system frequency
Fsclk = Osc*Mul*2;
Fsclk /= Div*(CCLKCFG+1);
return(Fsclk);
}
/*************************************************************************
* Function Name: SYS_GetFpclk
* Parameters: Int32U Periphery
* Return: Int32U
*
* Description: return Pclk [Hz]
*
*************************************************************************/
Int32U SYS_GetFpclk(Int32U Periphery)
{
Int32U Fpclk;
pInt32U pReg = (pInt32U)((Periphery < 32)?&PCLKSEL0:&PCLKSEL1);
Periphery &= 0x1F; // %32
Fpclk = SYS_GetFsclk();
// find peripheral appropriate periphery divider
switch((*pReg >> Periphery) & 3)
{
case 0:
Fpclk /= 4;
break;
case 1:
break;
case 2:
Fpclk /= 2;
break;
default:
Fpclk /= 8;
}
return(Fpclk);
}
/*************************************************************************
* Function Name: GpioInit
* Parameters: void
* Return: void
*
* Description: Reset all GPIO pins to default: primary function
*
*************************************************************************/
void GpioInit(void)
{
// Set to inputs
IO0DIR = \
IO1DIR = \
FIO0DIR = \
FIO1DIR = \
FIO2DIR = \
FIO3DIR = \
FIO4DIR = 0;
// Enable Fast GPIO0,1
SCS_bit.GPIOM = 1;
// clear mask registers
FIO0MASK =\
FIO1MASK =\
FIO2MASK =\
FIO3MASK =\
FIO4MASK = 0;
// Reset all GPIO pins to default primary function
PINSEL0 =\
PINSEL1 =\
PINSEL2 =\
PINSEL3 =\
PINSEL4 =\
PINSEL5 =\
PINSEL6 =\
PINSEL7 =\
PINSEL8 =\
PINSEL9 =\
PINSEL10= 0;
}
/*************************************************************************
* Function Name: Dly100us
* Parameters: void *arg
* Return: void
*
* Description: Delay [100us]
*
*************************************************************************/
void Dly100us(void *arg)
{
volatile Int32U Dly = (Int32U)arg, Dly100;
for(;Dly;Dly--)
for(Dly100 = 500; Dly100; Dly100--);
}
/*************************************************************************
* Function Name: main
* Parameters: none
*
* Return: none
*
* Description: main
*
*************************************************************************/
int main(void)
{
Int8U Buffer[100];
pInt8U pBuffer;
Int32U Size,TranSize;
#if CDC_DEVICE_SUPPORT_LINE_CODING > 0
CDC_LineCoding_t CDC_LineCoding;
UartLineCoding_t UartLineCoding;
#endif // CDC_DEVICE_SUPPORT_LINE_CODING > 0
#if CDC_DEVICE_SUPPORT_LINE_STATE > 0
#if UART1_MODEM_STAT_ENA > 0
UartModemEvents_t UartModemEvents;
UartModemLineState_t UartModemLineState;
CDC_LineState_t CDC_LineState;
#endif // UART1_MODEM_STAT_ENA > 0
UartLineEvents_t UartLineEvents;
SerialState_t SerialState;
#endif // CDC_DEVICE_SUPPORT_LINE_STATE > 0
// MAM init
MAMCR_bit.MODECTRL = 0;
MAMTIM_bit.CYCLES = 3; // FCLK > 40 MHz
MAMCR_bit.MODECTRL = 2; // MAM functions fully enabled
// Init clock
InitClock();
// Init GPIO
GpioInit();
// Init VIC
VIC_Init();
// Init UART 1
UartInit(UART_1,4,NORM);
// Init USB
USB_Init(1,UsbCdcConfigure);
// Init CDC
UsbCdcInit(3);
__enable_interrupt();
// Soft connection enable
USB_ConnectRes(TRUE);
HD44780_PowerUpInit();
// Show message on the LCD
HD44780_StrShow(1, 1, " IAR Systems ");
HD44780_StrShow(1, 2, " CD Class ");
LCD_LIGHT_ON();
while(1)
{
if (UsbCdcIsCdcConfigure())
{
// Data from USB
Size = UsbCdcRead(Buffer,sizeof(Buffer)-1);
if(Size)
{
#ifdef DATA_LOGGING
Buffer[Size] = 0;
printf("> %s\n",Buffer);
#endif // DATA_LOGGING
TranSize = 0;
pBuffer = Buffer;
do
{
Size -= TranSize;
pBuffer += TranSize;
TranSize = UartWrite(UART_1,pBuffer,Size);
}
while(Size != TranSize);
}
// Data from UART1
Size = UartRead(UART_1,Buffer,sizeof(Buffer)-1);
if(Size)
{
#ifdef DATA_LOGGING
Buffer[Size] = 0;
printf("< %s\n",Buffer);
#endif // DATA_LOGGING
while(!UsbCdcWrite(Buffer,Size));
}
// Get line and modem events from UART
#if CDC_DEVICE_SUPPORT_LINE_STATE > 0
// Get line events - BI, FE, PE, OE
UartLineEvents = UartGetUartLineEvents(UART_1);
#if UART1_MODEM_STAT_ENA > 0
// Get modem line events - RI, DCD and DSR
UartModemEvents = Uart1GetUartModemEvents();
if(UartLineEvents.Data || UartModemEvents.Data)
{
// Modem lines report - DCD, DSR and RI
SerialState.bRxCarrier = UartModemEvents.bDCD;
SerialState.bTxCarrier = UartModemEvents.bDSR;
SerialState.bRingSignal = UartModemEvents.bDRI;
#else
if(UartLineEvents.Data)
{
SerialState.Data = 0;
#endif // UART1_MODEM_STAT_ENA > 0
// Line events report BI, PE, FE and OE
SerialState.bBreak = UartLineEvents.bBI;
SerialState.bFraming = UartLineEvents.bFE;
SerialState.bOverRun = UartLineEvents.bOE;
SerialState.bParity = UartLineEvents.bPE;
// Send events
UsbCdcReportSerialCommState(SerialState);
}
#endif // CDC_DEVICE_SUPPORT_LINE_STATE > 0
}
// UART line coding - Baud rate, number of the stop bits,
// number of bits of the data word and parity type
#if CDC_DEVICE_SUPPORT_LINE_CODING > 0
if(UsbCdcIsNewLineCodingSettings())
{
CDC_LineCoding = UsbCdcGetLineCodingSettings();
// Update the baud rate
UartLineCoding.dwDTERate = CDC_LineCoding.dwDTERate;
// Update the stop bits number
UartLineCoding.bStopBitsFormat = CDC_LineCoding.bCharFormat?UART_TWO_STOP_BIT:UART_ONE_STOP_BIT;
// Update the parity type
UartLineCoding.bParityType = (CDC_LineCoding.bParityType == 0)?UART_NO_PARITY:(UartParity_t)(CDC_LineCoding.bParityType-1);
// Update the word width
UartLineCoding.bDataBits = (UartWordWidth_t)(CDC_LineCoding.bDataBits - 5);
// Set UART line coding
UartSetLineCoding(UART_1,UartLineCoding);
}
#endif // CDC_DEVICE_SUPPORT_LINE_CODING > 0
// Get line and modem events from USB
#if UART1_MODEM_STAT_ENA > 0 && CDC_DEVICE_SUPPORT_LINE_STATE > 0
// Modem lines - DTR, RTS
if(UsbCdcIsNewLineStateSettings())
{
CDC_LineState = UsbCdcGetLineStateSettings();
UartModemLineState.bDTR = CDC_LineState.DTR_State;
UartModemLineState.bRTS = CDC_LineState.RTS_State;
Uart1SetModemLineState(UartModemLineState);
}
#endif // UART1_MODEM_STAT_ENA > 0 && CDC_DEVICE_SUPPORT_LINE_STATE > 0
#if CDC_DEVICE_SUPPORT_BREAK > 0
// Break event
UartSetUartLineState(UART_1,UsbCdcGetBreakState());
#endif // CDC_DEVICE_SUPPORT_BREAK > 0
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -