📄 ekf_predict2.m
字号:
%EKF_PREDICT2 2nd order Extended Kalman Filter prediction step%% Syntax:% [M,P] = EKF_PREDICT2(M,P,[A,F,Q,a,W,param])%% In:% M - Nx1 mean state estimate of previous step% P - NxN state covariance of previous step% A - Derivative of a() with respect to state as% matrix, inline function, function handle or% name of function in form A(x,param) (optional, default identity)% F - NxNxN Hessian matrix of the state transition function% w.r.t. state variables as matrix, inline% function, function handle or name of function% in form F(x,param) (optional, default identity)% Q - Process noise of discrete model (optional, default zero)% a - Mean prediction E[a(x[k-1],q=0)] as vector,% inline function, function handle or name% of function in form a(x,param) (optional, default A(x)*X)% W - Derivative of a() with respect to noise q% as matrix, inline function, function handle% or name of function in form W(x,k-1,param) (optional, default identity)% param - Parameters of a (optional, default empty)%% %% Out:% M - Updated state mean% P - Updated state covariance% % Description:% Perform Extended Kalman Filter prediction step.%% See also:% EKF_PREDICT1, EKF_UPDATE1, EKF_UPDATE2, DER_CHECK, LTI_DISC, % KF_PREDICT, KF_UPDATE% History:% 22.5.07 JH Initial version. Modified from ekf_predict1.m% originally created by SS.%% Copyright (C) 2007 Jouni Hartikainen, Simo S鋜kk
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -