📄 kf_lhood.m
字号:
%KF_LHOOD Kalman Filter measurement likelihood
%
% Syntax:
% LH = KF_LHOOD(X,P,Y,H,R)
%
% In:
% X - Nx1 state mean
% P - NxN state covariance
% Y - Dx1 measurement vector.
% H - Measurement matrix.
% R - Measurement noise covariance.
%
% Out:
% LH - Likelihood of measurement.
%
% Description:
% Calculate likelihood of measurement in Kalman filter.
% If and X and P define the parameters of predictive
% distribution (e.g. from KF_PREDICT)
%
% p(x[k] | y[1:k-1]) = N(x[k] | m-[k], P-[k])
%
% then this likelihood is the probability of measurement
% in innovation distribution:
%
% p(y[k] | y[1:k-1]) = N(y[k] | IM, IS)
%
% See also:
% KF_PREDICT, KF_UPDATE
% History:
% 20.11.2002 The first official version.
%
% Copyright (C) 2002 Simo S鋜kk
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -