⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ekf_update2.m

📁 documentation for optimal filtering toolbox for mathematical software package Matlab. The methods i
💻 M
字号:
%EKF_UPDATE2  2nd order Extended Kalman Filter update step%% Syntax:%   [M,P,K,MU,S,LH] = EKF_UPDATE2(M,P,Y,H,H_xx,R,[h,V,param])%% In:%   M  - Nx1 mean state estimate after prediction step%   P  - NxN state covariance after prediction step%   Y  - Dx1 measurement vector.%   H  - Derivative of h() with respect to state as matrix,%        inline function, function handle or name%        of function in form H(x,param)%   H_xx - DxNxN Hessian of h() with respect to state as matrix,%          inline function, function handle or name of function%          in form H_xx(x,param) %   R  - Measurement noise covariance.%   h  - Mean prediction (measurement model) as vector,%        inline function, function handle or name%        of function in form h(x,param).                 (optional, default H(x)*X)%   V  - Derivative of h() with respect to noise as matrix,%        inline function, function handle or name%        of function in form V(x,param).                 (optional, default identity)%   param - Parameters of h                              (optional, default empty)%% Out:%   M  - Updated state mean%   P  - Updated state covariance%   K  - Computed Kalman gain%   MU - Predictive mean of Y%   S  - Predictive covariance Y%   LH - Predictive probability (likelihood) of measurement.%   % Description:%   Extended Kalman Filter measurement update step.%   EKF model is%%     y[k] = h(x[k],r),   r ~ N(0,R)%% See also:%   EKF_PREDICT1, EKF_UPDATE1, EKF_PREDICT2, DER_CHECK, LTI_DISC, %   KF_UPDATE, KF_PREDICT% Copyright (C) 2002-2006 Simo S鋜kk

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -