⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kf_update.m

📁 documentation for optimal filtering toolbox for mathematical software package Matlab. The methods i
💻 M
字号:
%KF_UPDATE  Kalman Filter update step%% Syntax:%   [X,P,K,IM,IS,LH] = KF_UPDATE(X,P,Y,H,R)%% In:%   X - Nx1 mean state estimate after prediction step%   P - NxN state covariance after prediction step%   Y - Dx1 measurement vector.%   H - Measurement matrix.%   R - Measurement noise covariance.%% Out:%   X  - Updated state mean%   P  - Updated state covariance%   K  - Computed Kalman gain%   IM - Mean of predictive distribution of Y%   IS - Covariance or predictive mean of Y%   LH - Predictive probability (likelihood) of measurement.%   % Description:%   Kalman filter measurement update step. Kalman Filter%   model is%%     x[k] = A*x[k-1] + B*u[k-1] + q,  q ~ N(0,Q)%     y[k] = H*x[k]   + r,             r ~ N(0,R)%%   Prediction step of Kalman filter computes predicted%   mean m-[k] and covariance P-[k] of state:%%     p(x[k] | y[1:k-1]) = N(x[k] | m-[k], P-[k])%%   See for instance KF_PREDICT how m-[k] and P-[k] are%   calculated. %%   Update step computes the posterior mean m[k] and%   covariance P[k]  of state given new measurement:%%     p(x[k] |爕[1:k]) = N(x[k] |爉[k], P[k])%%   Innovation distribution is defined as%%     p(y[k] |爕[1:k-1]) = N(y[k] | IM[k], IS[k])%   %   Updated mean x[k] and covarience P[k] are given by%   the following equations (not the only possible ones):%%     v[k] = y[k] - H[k]*m-[k]%     S[k] = H[k]*P-[k]*H[k]' + R[k]%     K[k] = P-[k]*H[k]'*[S[k]]^(-1) %     m[k] = m-[k] + K[k]*v[k]%     P[k] = P-[k] - K[k]*S[k]*K[k]'%% Example:%   m = m0;%   P = P0;%   M = m0;%   for i=1:size(Y,2)%     [m,P] = kf_predict(m,P,A,Q);%     [m,P] = kf_update(m,P,Y(:,i),H,R);%     M = [M m];%   end%% See also:%   KF_PREDICT, EKF_UPDATE% History:%   26.02.2007 JH Added the equations for calculating the updated%                 means and covariances to the description section.%   12.01.2003 SS Symmetrized covariance update%   20.11.2002 SS The first official version.%% Copyright (C) 2002, 2003 Simo S鋜kk

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -